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Abstract
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link sovereign credit risk premia to consumption growth forecasts and macroeconomic
uncertainty, as well as investor preferences. We find evidence that shocks to U.S. con-
sumption are a common source of time varying risk premia in the global sovereign debt
market. Furthermore, spreads are mainly driven by compensation for losses in bad
states, pointing to the fact that sovereign CDS spreads are similar in nature to catas-
trophe bonds. A principal component analysis suggests that three factors are sufficient
to explain on average 95% of commonality. We interpret the first and second principal
components as the level and the slope of the term structure of CDS prices. Regression
analysis reveals that expected consumption growth and consumption volatility explain
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1 Introduction

The emerging market sovereign debt crisis in the nineties, and particularly the recent sovereign

debt crisis in Europe, have revived interest in sovereign credit risk. Sovereign debt was gen-

erally considered to be a low risk asset class. In a panoramic and historical overview of

sovereign debt crises, Reinhart and Rogoff (2008) vividly illustrate the public misperception

of government debt as a safe haven. The real economic consequences of sovereign default,

such as inflation, exchange rate crashes, banking crises, and currency debasements, and the

accompanied social costs over and above financial losses, justify the need to understand the

drivers of sovereign risk. Yet, the academic literature fails to agree on the determinants

of sovereign default risk, as reflected in sovereign credit spreads. A particular discussion

pertains as to whether sovereign credit risk is priced globally or locally.

This paper seeks to identify the common factor(s) driving sovereign credit risk and studies

the common variation in global sovereign Credit Default Swap (CDS) spreads and the strong

co-movement (commonality) of the default swap term structure. The strong commonality

in sovereign CDS has been emphasized in recent research by Pan and Singleton (2008)

and Longstaff et al. (2010), and is illustrated in Figure 1. Motivated by their results and

preliminary findings of strong negative correlation between American consumption growth

and the evolution of credit indices, we attempt to explain variation in the global sovereign

CDS spreads through macroeconomic fundamentals in the United States.

[Figure 1 here]

Structural models1 of credit risk following the contingent claims analysis pioneered by

Merton (1974), predict a theoretical relationship between credit spreads and leverage, volatil-

ity and interest rates. Yet, their guidance in identifying the determinants of sovereign credit

risk fails to be satisfactory2. Reduced-form models on the other hand, while proving useful

in practical applications, remain silent about the theoretical determinants of credit spreads3.

For sovereign spreads, the challenge to explain credit risk on the basis of theoretical intu-

ition seems even more difficult, as default is not determined by the leverage ratio, but rather

by the willingness of the government to repay its debt. Thus, the sovereign borrower’s re-

payment depends on the lender’s ability to punish in case of default and the future access

1For papers on structural credit risk models, see among others Black and Cox (1976), Jones et al. (1984),
Kim and Ramaswamy (1993), Anderson and Sundaresan (1996), Mella-Barral and Perraudin (1997), Gold-
stein, Ju and Leland (2001) and Huang and Huang (2003). See Sundaresan (2000) for an early survey on
structural credit risk models.

2For a recent revival of structural credit risk models using the contingent claims analysis, see Gray and
Bodie (2007).

3See Ericsson et al. (2009) for a thorough discussion.
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to international capital markets (Edwards (1984)). We refer to this inability of theoretical

models to reconcile historical and model-implied credit spreads and default probabilities as

the sovereign credit spread puzzle, which, we argue, remains heretoforth unexplained.

In contrast to regression-based analysis, we develop a general equilibrium consumption-

based4 pricing model yielding closed-form solutions for CDS spreads and their moments,

guided by a discretization of the default swap pricing suggested by Duffie (1999), Hull and

White (2000a) and Lando (2004). In this economy, macroeconomic forecasts and uncer-

tainty are random and fluctuate according to a N -state exogenous Markov chain. Our

representative agent is risk-averse, exhibits risk and generalized disappointment aversion as

defined by Routledge and Zin (2010). These preferences, which are embedded in the Epstein

and Zin (1989) recursive utility framework, overweight disappointing outcomes and gener-

ate strong countercyclical risk aversion as compared to expected utility. Together with a

default intensity process, whose sensitivity is also linked to consumption risk, we reproduce

the term structure of first and second moments for sovereign CDS spreads and of default

probabilities at aggregate levels. In this setting, spreads are not only tractable, but can

be interpreted through their link with the preferences of a representative agent and their

interaction with consumption forecasts and macroeconomic uncertainty. We contribute to

the pricing literature by providing an analytical formula for the credit default swap spread

linked to macroeconomic forecasts and uncertainty, while closed-form solutions for other as-

set prices are adapted from Bonomo et al. (2011). In addition to a theoretical model for

credit default swap prices and an empirical application with a data set spanning the global

sovereign CDS market, we investigate the strong co-movement (commonality) of the default

swap term structure.

Our model has several pricing implications. While we manage to match historically

observed cumulative default probabilities and the first moment of the term structure at

aggregate levels, we perform less well in explaining CDS volatility at shorter maturities for the

rating categories BB and B. Moreover, the model produces ratios of risk-neutral to physical

default probabilities consistent with the literature (Huang and Huang (2003), Berndt et al.

(2007)). As macroeconomic forecasts and uncertainty are the only risk factors in our model,

these results suggest that two factors are sufficient to explain a large fraction of the variation

in the global sovereign CDS market. These results also support the view that the price of

global sovereign credit risk is more likely to be driven by investors’ aversion towards risk,

rather than by country-specific assessments of economic fundamentals5, which is consistent

4See Campbell (2003) for an excellent survey of consumption-based asset pricing.
5See Pan and Singleton (2008) for this point.
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with earlier work. Yet,the global risk factor that we propose is significantly different. While

we document through our consumption-based framework a tight link between sovereign credit

risk and U.S. macroeconomic uncertainty, characterized through expected level and volatility

of U.S. consumption growth, other papers suggest a link with U.S. stock market volatility as

measured by the VIX index (Pan and Singleton (2008) and Longstaff et al. (2010)), measures

of investors’ risk appetite (Remolona et al. (2008)) or the correlation with the U.S. business

cycle (Borri and Verdelhan (2009))6. An illustration of this phenomenon is provided in Figure

2, which plots the average 5-year CDS spread across all countries in our data set. The graph

emphasizes the fact that general run-ups in risk aversion occurred at times of major global

political or financial events. Also, the increased cost of insurance against sovereign default

was more or less common across the globe during the financial crisis, although the evolution

of country-specific fundamentals was very heterogenuous. Given that we restrict ourselves

to parameter scenarios which have been successful in explaining the equity premium puzzle

and in reproducing equity valuation ratios and return predictability consistent with historical

data, we manage to simultaneously price equity and fixed income. This finding suggests that

the equity and sovereign CDS markets are integrated.

[Figure 2 here]

In addition, we are also able to generate state-dependent spreads due to the Markov

set-up. This allows us to gain insights on the tail risk of sovereign credit risk. In particular,

we find that sovereign CDS spreads are similar in nature to disaster insurance, which is

characterized by low probability of high impact events. Moreover, the state-dependent term

structure sheds light on the pattern of the spread curve in each state of the world. While

the mean term structure is always upward sloping, we observe a reversal in states of low

expected consumption growth.

A limitation to our approach is that we reproduce moments of sovereign CDS spreads

grouped in rating categories. Thus it is fair to argue that macroeconomic uncertainty is able

to explain sovereign credit risk at the aggregate level. Testable implications at a country level

pose a challenge, given that country-specific physical default intensities are unobservable.

Hence in our framework, it is more difficult to explain why the CDS spread of Germany

for example is different from that of France or the Netherlands, all AAA rated countries.

6Duffie et al. (2003) cites the price of Brent oil and the total level of currency reserves (minus Gold)
for the case of Russian debt. Carr and Wu (2007) document that CDS spreads of Mexico and Brazil show
strong positive contemporaneous correlations with both the currency option implied volatility and the slope
of the implied volatility curve in moneyness, but argue that there are additional systematic movements in
the credit spreads that their model fails to capture.
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At the same time, this is not our objective here, but is the goal of further research7. In

order to obtain prices for CDS contracts, we need to calibrate our exogenous default process

to historical estimates of forward looking cumulative default probabilities, which are only

available at aggregate level. A time-varying default process is needed to accommodate both

default probabilities and the term structure.

Empirically, we find evidence of strong commonality in the sovereign CDS term struc-

ture. A principal Component Analysis performed on all maturities of the 38 countries taken

together reveals that the first three principal components explain on average 95% of the vari-

ation of the global sovereign CDS market. The first two factors can be identified as the level

and the slope of the term structure of CDS spreads. We further corroborate our findings

of U.S. consumption risk as a priced global factor by investigating its role with the com-

monality of the CDS term structure. We regress the factors from the Principal Component

Analysis on the monthly consumption growth dynamics to show that the latter have strong

explanatory power, defined as the level of R2, for the first two principal components (75%),

but are unrelated to the third (0%). Hence we are not only able to identify common factors

of sovereign CDS spreads, but we can also link them to the strong commonality observed in

the term structure.

An alternative explanation to our story would be that consumption growth is just an

indirect determinant of credit risk, acting as a channel for contagion and spill-over of risk

aversion originating in other variables, in particular U.S. market volatility. We respond to

the endogeneity concern by proving that the Variance Risk Premium is itself endogenous

in our model and we show that the latter has no explanatory power in explaining the first

two principal components after controlling for macroeconomic fundamentals. We further

support our hypothesis by running a Vector Autoregression (VAR) between consumption

growth and the VIX and show that the expected consumption risk is not driven by the VIX,

while results for the link between implied option volatility and consumption volatility are

inconclusive and point to mere correlation.

We contribute by trying to fill some gaps in the literature. In essence, there seems to be a

common acceptance in the academic literature that theoretical determinants are insufficient

to explain sovereign risk premia (embedded in CDS prices) and that common variation is

driven more by global events than by country-specific fundamentals (in particular at short-

term horizons)8. Yet, there fails to be a consensus on the source of this common variation

7At the time of writing, we learned about ongoing research focusing on between-country level differences
in sovereign CDS spreads at Copenhagen Business School.

8Hilscher and Nosbusch (2010) find that the level and volatility of terms of trade are statistically and
economically significant in explaining emerging market sovereign bond spreads, even after controlling for
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and analysis in the existant literature remains largely regression-based. We provide a general

equilibrium analysis, thereby specifically replying to Collin-Dufresne and Solnik (2001), who

call for the application of general equilibrium models embedding default risk to further

investigate the determinants of credit spread (changes).

We differ from the literature by studying a richer dataset9, spanning a geographical region

representative of the global sovereign CDS market. Our data sample, including the full term

structure for 38 sovereign countries, spans a very broad geographical region and maturity

spectrum. The sample period runs from May 2003 through July 2010 and thus allows us to

split the sample into two equal sub-periods referring to the pre- and post-crisis period. With

a few exceptions, academic papers have focused their analysis on individual countries or, if

a larger sample is used, they have restricted themselves to the most liquid five year contract

rather than the whole term structure (Longstaff et al. (2010)), and mainly to emerging

markets (Remolona et al. (2008)). In addition, studies including the recent financial crisis,

a period of increased financial integration due to the ”originate-and-distribute” framework,

are also limited.

Generally, studies investigating CDS spreads ignore the overlap of the stochastic discount

factor between stocks and ”synthetic credit”10. By taking into account only scenarios, which

produce reasonable estimates for stock valuation ratios, we add to the literature that tries

to simultaneously price equity and credit.

Finally, and most importantly, we provide evidence that U.S. consumption risk is priced

in the global sovereign CDS market and is a strong driver of common variation in sovereign

CDS risk premia. This risk factor has previously not been used to investigate sovereign CDS

spreads. Surprisingly, Pan and Singleton (2008) address the importance of consumption risk

in their discussion, yet don’t include it directly in their analysis11.

Our findings have important implications for risk managers, international investors and

policy makers. As the first face a challenge of mapping credit risk exposures onto a limited

set of risk factors, it is of major interest to learn that U.S. consumption data is a significant

global factors. Their study isdone at a yearly horizon. At the same time, they also find a strong effect for
the VIX index.

9The authors would like to thank Markit for providing the data.
10Two papers addressing the equity and credit spread puzzle in a unified consumption-based framework

are Bhamra et al. (2010) and Chen et al. (2009).
11Using regression-based analysis, Tsuji (2005) shows that a large set of theoretical determinants have

little explanatory power in explaining corporate bond spreads in Japan, with an adjusted R2 going up to
only 34% if the bond rating is included as an explanatory variable. Very interesting for our approach is that
results improve remarkably when the covariance between historical consumption and bond yields, a proxy for
the business cycle, is taken into account. The explanatory power as measured by the adjusted R2 increases
on average to about 75%.
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channel affecting risk aversion and thereby the price of sovereign credit portfolios. The same

argument holds for the class of international portfolio investors, who care about the nature

of sovereign credit as it affects their ability to diversify the risk of global debt portfolios12.

Finally, a better understanding of the drivers of the global sovereign credit markets is valuable

information for policy makers, who significantly intervened in the sovereign debt and CDS

market during the European sovereign debt crisis.

Although there has been a growing body of literature analyzing corporate spreads13,

sovereign CDS prices are explored only to a lesser extent. Our paper is most closely aligned

with Pan and Singleton (2008), Longstaff et al. (2010) and Remolona et al. (2008)14. We

significantly depart however from these papers by our methodology, which is aligned with

Bonomo et al. (2011), as well as by our data set. The former authors either study the full

term structure for a selection of individual countries, or restrict themselves to one maturity

of the CDS contract in a specified region. In addition, we investigate a different channel

(i.e. schocks to U.S. consumption) that affects risk aversion and therefore risk premia in

sovereign debt markets.

Pan and Singleton (2008) explore the nature of default intensity and recovery rates im-

plicit in the term structure of CDS spreads of Korea, Turkey and Mexico over the period

March 2001 through August 2006. While they propose a one-factor model for the risk-

neutral mean arrival rate of a credit event, we specify the hazard rate process as a two-factor

model containing expected consumption growth and consumption volatility, hence providing

an economic interpretation to the drivers of the default intensity. They find that the first

principal component explains on average 96% of the variation over time in the entire term

structure of CDS spreads and manage to capture most of the variation using a one-factor

model, but looking only at three geographically dispersed emerging countries. Moreover,

they document strong correlation of the sovereign risk premia with the CBOE VIX option

volatility index, the spread between the 10-year return on US BB-rated industrial corporate

bonds and the 6-month US Treasury bill rate, and the volatility in the own-currency options

market. Their model performs worst for the 1-year CDS spread, which they relate to local

supply and demand effects.

Also Longstaff et al. (2010) find evidence in favor of global factors pricing sovereign CDS

12See Longstaff et al. (2010).
13See among others Fama and French (1989), Fama and French (1993), Duffee (1998), Collin-Dufresne

and Goldstein (2001), Elton et al. (2001), Duffie et al. (2003), Campbell and Taksler (2003) for bonds and
Hull et al. (2004), Berndt et al. (2007), Blanco et al. (2005), Longstaff et al. (2005), Fabozzi et al. (2007),
Cao and Yu (2007), Ericsson et al. (2009), Cremers et al. (2008), Yibin Zhang et al. (2009), Carr and Wu
(2010), Wang et al. (2010) for CDS.

14Other papers on sovereign CDS are for example Zhang (2003)and Carr and Wu (2007).

6



spreads using the pricing framework in Pan and Singleton (2008). They document a strong

relation between sovereign credit risk and U.S. stock market excess return and volatility as

measured by the VIX index and extract a risk premium roughly equal to a third of the

spread, somewhat lower than what was documented by Elton et al. (2001) for corporate

bond spreads. In addition, they find that the first principal component explains on average

64% of the variation, which increases to 75% if the sample period is restricted to the crisis.

Although they consider 26 countries, they only study the 5-year spread, but at a slightly

longer horizon from October 2000 to January 2010. Their analysis focuses on a monthly

horizon, while we investigate daily spreads.

Another related study is carried out by Remolona et al. (2008). The authors decompose

5-year sovereign CDS spreads for 24 emerging countries into an expected default loss com-

ponent and sovereign risk premia and regress changes in these variables on country-specific

variables and measures of investors’ risk appetite. They find that risk aversion affects pri-

marily the price of sovereign risk, and not the actual risk level itself.

An additional paper closely associated with ours is Borri and Verdelhan (2009), who

apply the general equilibrium set-up of Campbell and Cochrane (1999) to price sovereign

bonds. Yet several notable differences remain between their and our approach. In particular,

they investigate one-period bonds which are not matched in magnitude and neglect any

term structure effects, whereas we match the first moment of the term structure closely. In

addition, their set-up doesn’t allow to obtain closed-form solutions for bond prices. CDS

prices are non-linear and very different in nature and the Markov framework enables us to

calculate tractable analytic solutions. The authors also differ in their view on the systematic

risk drivers. They find that 80% of the cross-section of EMBI portfolios is explained by the

first two principal components, which they can relate to the EMBI market excess return

and the return from a long-short portfolio strategy, where the portfolios are sorted by their

probabilities of default and their bond betas. Also, their objective is different, in that they

try to disentangle the magnitude and timing of default, which are closely intertwined in the

nature of CDS prices. Finally, although they analyze a longer time period, they only look

at emerging markets.

While we are conceptually closely aligned with these papers, our methodology borrows

heavily from Bonomo et al. (2011), who reproduce asset moments of the Bansal and Yaron

(2004) long-run-risk economy using a general equilibrium consumption based asset pricing

model where the representative agent is risk averse and exhibits disappointment aversion.

The rest of the paper proceeds as follows. Section 2 reviews the Credit default swap

market and its pricing. In section 3, we present the model set-up. The empirical application
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is discussed in section 4, featuring summary statistics, the model calibration, a discussion

of the results and a sensitivity analysis for the choice of our preference parameters. Section

5 studies the commonality of sovereign CDS spreads and responds to endogeneity concerns.

Finally, in section 6 we conclude.

2 Credit Default Swaps

2.1 The market for Credit Default Swaps

The emergence of a standardized contract (ISDA 2002 Master Agreement) by the Inter-

national Swaps and Derivatives Association to trade plain vanilla credit derivatives in the

Over-the-Counter market has significantly boosted the liquidity in the market for pricing

and transferring credit risk. Going from $631.5 billion in the first quarter of 2001 to $62.173

trillion in the second quarter of 2007, the Bank for International Settlements (BIS) Semian-

nual OTC derivatives statistics at end-December 2009 shows a spectacular average annual

increase of almost 115%. We should note that subsequent surveys show a significant drop in

trading with figures down to $30.261 trillion in June 2010, which is likely due to the fact the

credit derivatives were central to the 2007-2009 financial crisis and a netting of outstanding

positions. However, the efficiency of the market and a move towards exchange-traded prod-

ucts should continue to support the use of the market for transferring credit risk to those

parties most willing to deal with it. In addition, the market for credit derivatives, while

small compared to interest rate and foreign exchange derivatives, represents an important

and growing fraction of the global OTC derivatives market.

A Credit Default Swap is a fixed income derivative instrument, which allows a protection

buyer to purchase insurance against a contingent credit event on a Reference Entity (as de-

fined by the International Swaps and Derivatives Association (ISDA) 2003 Credit Derivatives

Definition) by paying an annuity premium to the protection seller, generally referred to as the

Credit Default Swap spread. The credit event triggers a payment by the protection seller to

the insuree equal to the difference between the notional principal and the mid-market value

of the underlying reference obligation, obtained through a dealer poll. Settlement can occur

either through physical delivery or a cash exchange. In general, the occurrence of a credit

event must be documented by public notice and notified to the investor by the protection

buyer. Qualifying ISDA credit events are Bankruptcy, Failure to pay, Obligation default

or acceleration, Repudiation or moratorium (for sovereign entities) and Restructuring, and

represent thus a broader definition of distress than the more general form of Chapter 7 or
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Chapter 11 bankruptcy. The reader should note that the implementation of the CDS Big

Bang and Small Bang protocols on 8 April and 20 June 2009 for the American and Euro-

pean CDS markets respectively has significantly altered the nature of the global CDS market.

While these institutional changes relate to the standardization of the coupon structure and

the settlement process, they don’t affect the pricing of risk and are thus irrelevant for our

analysis.

2.2 Credit Default Swap valuation

In order to derive our valuation of closed-form solutions to credit default swap prices, we rely

on a discretization of the continuous framework in Duffie (1999), Hull and White (2000a)

and Lando (2004), albeit adapting the explicit modeling of the hazard rate. In practice, risky

bonds are priced relative to a ”risk-free” benchmark rate such as the yield on a Treasury bond.

Pure default spreads are thus hard to disentangle due to implicit liquidity components, as the

yield on a T -year Treasury bond is not a pure default-free rate due to repurchase agreement

specials and tax advantages (”moneyness”). Credit default swap spreads however, can be

regarded as pure default spreads. We thus adopt the assumption in Longstaff et al. (2005),

who hypothesize that default swap spreads only contain a default component15.

We write the model at a daily frequency in order to agree with daily quotations in

the CDS market. We assume that there are J trading days in a coupon period and that

swap premia are paid on a yearly basis16, and that the period n contains the trading days

(n− 1) J + j, j = 1, . . . , J . Every coupon period has thus J trading days and a K-period

credit default swap has KJ trading days. Credit default swaps can be priced similar to

interest rate swaps, that is net present values of cash flows for both legs (protection buyer

and protection seller) must equalize at inception. Suppose you want to price a K-period

CDS on an underlying reference obligation. The protection premium, πpbt to be paid by the

protection buyer is equal to

πpbt =
K∑
k=1

Et [Mt,t+kJCDSt (K) I (τ > t+ kJ)]

+Et

[
Mt,τ

(
τ − t
J
−
⌊
τ − t
J

⌋)
CDSt (K) I (τ ≤ t+KJ)

] (1)

15Longstaff et al. (2005) assume that CDS spreads are a pure measure of credit risk and trade them off
against bond yields in order to derive the liquidity component implicit in corporate yield spreads.

16The assumption of yearly payments assures that the model results can directly be translated into annu-
alized spreads. However, the model can easily accommodate bi-annual and quarterly payment frequencies.
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where CDSt (K) is the constant premium defined at day t and to be paid until the earlier

of either maturity (day t+KJ), or a credit event occurring at day τ . The process Mt,T , T > t

denotes the stochastic discount factor that values at day t, any financial payoff to be claimed

at a future day T . Notice that b·c denotes the floor function that maps a real number to

the largest previous integer, and I (·) is an indicator function that takes the value 1 if the

condition is met and 0 otherwise. The expression in equation (1) contains two parts. The

first relates to the premium payments made by the protection buyer conditional on survival.

The second part defines the accrual payments in case the reference entity defaults in between

two payment dates.

The protection seller on the other hand must cover any losses incurred by the protection

buyer in the presence of a credit event affecting the underlying reference obligation. The net

present value of the protection seller’s leg must thus equal

πpst = Et [Mt,τ (1−Rτ ) I (τ ≤ t+KJ)] , (2)

where the process Rτ represents the post-default recovery rate, which can be random in the

general setting and possibly contain claimed accruals from the defaulted reference obligation.

Equating the two legs, such that the net present value of the difference is zero at inception,

we can write the price of the CDS as

CDSt (K) =
Et [Mt,τ (1−Rτ ) I (τ ≤ t+KJ)]

K∑
k=1

Et [Mt,t+kJI (τ > t+ kJ)] + Et
[
Mt,τ

(
τ−t
J
−
⌊
τ−t
J

⌋)
I (τ ≤ t+KJ)

] . (3)

Applying the Law of Iterated Expectations to both the nominator and the denominator, we

obtain

CDSt (K) =

KJ∑
j=1

Et [Mt,t+j (1−Rt+j) (St+j−1 − St+j)]

K∑
k=1

Et [Mt,t+kJSt+kJ ] +
KJ∑
j=1

(
j
J
− b j

J
c
)
Et [Mt,t+j (St+j−1 − St+j)]

, (4)

where the process St ≡ Prob (τ > t | It) ≡ Probt (τ > t) denotes the conditional survival

probability, that is the conditional probability that the credit event did not occur at day t,

and where It denotes the information up to and including day t. In the above, we assume that

Prob (τ = t | IT ) = Prob
(
τ = t | Imin(t,T )

)
for all integers t and T . Thus, the conditional
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survival probability St is defined as

St = S0

t∏
j=1

(1− hj) , t ≥ 1, (5)

where the process ht ≡ Prob (τ = t | τ ≥ t; It) ≡ Probt (τ = t | τ ≥ t) denotes the condi-

tional instantaneous default probability of a given reference entity at day t, i.e. the hazard

rate. Generally, reduced-form credit risk models assume an exogenous default intensity whose

probability law governs the default process. We innovate by defining a hazard rate whose

default intensity is determined by its sensitivity to macroeconomic fundamentals. Moreover,

Rt defines the recovery rate at date t as a fraction of face value and Lt = (1−Rt) determines

the Loss Given Default (Loss Rate)17. The above definition illustrates that the derivation

of a closed-form solution for the valuation of a CDS spread requires an exogenous process

governing the stochastic discount factor Mt,t+1, the default intensity ht+1 and the recovery

rate Rt+1. These processes are described more explicitly in the following section.

3 Model Setup

3.1 Motivation for a Consumption-based Asset Pricing Model

Consumption-based asset pricing models follow the insight that investors care mostly about

consumption and that macroeconomic fundamentals, defined in our case by the forecast

and volatility of consumption growth, should hence entail predictive power for asset prices.

Thus, a representative agent should require higher risk premia when expected consumption

growth is low and volatility is high. While this economic insight has justified the use of

consumption-based models to price stocks and to a lesser extent bonds, the intuition should

remain the same for CDS spreads. This is strongly confirmed when we plot the iTraxx

EU on-the-run series, an index representing the 125 most traded corporate credit default

swaps against consumption growth in the United States in Figure (3). The picture clearly

shows a negative correlation between expected consumption growth and an aggregate index

of credit spreads. This observation crucially motivates our attempt to link CDS spreads to

macroeconomic fundamentals in a general equilibrium model.

[Figure 3 here]

17In what follows, we will interchange freely between the notions of Loss Given Default and Loss Rate.
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3.2 A Markov-Switching Model for Consumption growth

Following Bonomo et al. (2011), we assume that both mean and variance of consumption

growth gt+1 (gt+1 = lnGt+1, where Gt+1 = (Ct+1/Ct)
18) fluctuate according to a Markov

variable st, which can take a different value in each of the N states of nature of the economy.

The sequence st evolves according to a transition probability matrix P defined as:

P> = [pij]1≤i,j≤N , pij = Prob (st+1 = j | st = i) . (6)

As in Hamilton (1994), let ζt = est , where ej is the N × 1 vector with all components equal

to zero but the jth component equals one. Formally, consumption growth can be written as

follows:

gt+1 = xt + σtεg,t+1, (7)

where xt = µ>g ζt and σt =
√
ω>g ζt are the forecast and the volatility of consumption growth

respectively. The vectors µg and ωg contain the values of expected consumption growth and

consumption volatility respectively in each state of nature, and the component j refers to

the value in state st = j.

3.3 Preferences and Stochastic Discount Factor

We study the valuation of credit default swaps in the context of a representative agent

consumption-based general equilibrium model. We assume that the representative investor

has generalized disappointment aversion (GDA) preferences of Routledge and Zin (2010).

Following Epstein and Zin (1989) and Weil (1989), such an investor derives utility from

consumption recursively as follows:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+1)]1−
1
ψ

} 1

1− 1
ψ

if ψ 6= 1

= C1−δ
t [Rt (Vt+1)]δ if ψ = 1.

(8)

The current period lifetime utility Vt is a combination of current consumption Ct, and

Rt (Vt+1), a certainty equivalent of next period lifetime utility. The parameter ψ defines

the elasticity of intertemporal substitution (EIS), which can be disentangled from the co-

efficient of relative risk aversion γ through this form of utility. With GDA preferences the

18Ct defines the level of consumption in period t.
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risk-adjustment function R (.) is implicity defined by:

R1−γ − 1

1− γ
=

∫ ∞
−∞

V 1−γ − 1

1− γ
dF (V )−

(
1

α
− 1

)∫ κR

−∞

(
(κR)1−γ − 1

1− γ
− V 1−γ − 1

1− γ

)
dF (V ) ,

(9)

where 0 < α ≤ 1 and 0 < κ ≤ 1. When α is equal to one, the certainty equivalent

function R reduces to the Kreps and Porteus’s (Kreps and Porteus (1978), henceforth KP)

preferences, while Vt represents Epstein and Zin (1989) recursive utility. When α < 1, the

certainty equivalent decreases as outcomes below the threshold κR receive an additional

weight (1/α − 1). Thus, the parameter α characterizes disappointment aversion, while the

parameter κ reflects the fraction of the certainty equivalent R below which outcomes become

disappointing19. Formula (9) emphasizes the fact that, when disappointment kicks in, state-

probabilities are redistributed. Moreover, the threshold of disappointment is time-varying.

Hansen et al. (2008) derive the stochastic discount factor in terms of the continuation

value of utility of consumption when preferences are KP as follows:

M∗
t,t+1 = δ

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ

= δG
− 1
ψ

t+1Z
1
ψ
−γ

t+1 , (10)

where

Gt+1 =
Ct+1

Ct
and Zt+1 =

Vt+1

Rt (Vt+1)
=

(
δ

(
Ct+1

Ct

)− 1
ψ

Rc,t+1

) 1

1− 1
ψ

, (11)

and where the last equality in (11) implies an equivalent representation of the stochastic

discount factor (10), based on consumption growth and the gross return Rc,t+1 to a claim

on future aggregate consumption stream. In general this return is unobservable. The return

to a stock market index is sometimes used to proxy for this return as in Epstein and Zin

(1991); or other components can be included such as human capital with assigned market or

shadow values (see Campbell 1996). If γ = 1/ψ, equation (10) corresponds to the stochastic

discount factor of an investor with time-separable utility and constant relative risk aversion.

Alternatively, if γ > 1/ψ, Bansal and Yaron (2004) and Hansen et al. (2008) show that

a premium for long-run consumption risk is added by the ratio of future utility Vt+1 to

its certainty equivalent Rt (Vt+1). For GDA preferences, long-run consumption risk enters

19The certainty equivalent is decreasing in γ, increasing in α (for 0 < α ≤ 1) and decreasing in κ (for
0 < κ ≤ 1). Thus, α and κ characterize also measures of risk aversion, but they are of a different nature
than γ.
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through an additional term capturing disappointment aversion as follows:

Mt,t+1 = M∗
t,t+1

(
1 + (1/α− 1) I (Zt+1 < κ)

1 + (1/α− 1)κ1−γEt [I (Zt+1 < κ)]

)
. (12)

Hence, disappointing outcomes in the economy will obtain a relatively higher importance

and require higher risk premia accordingly.

Based on the dynamics (7) and using the Euler condition for the claim to aggregate

consumption, we show in Appendix (A) that the stochastic discount factor (12) may be

expressed as follows:

Mt,t+1 = exp
(
ζ>t Aζt+1 − γgt+1

) [
1 +

(
1

α
− 1

)
I
(
gt+1 < −ζ>t Bζt+1 + lnκ

)]
, (13)

where the components of the N ×N matrices A and B are given by:

aij = ln δ +

(
1

ψ
− γ
)
bij − ln

[
1 +

(
1

α
− 1

)
κ1−γ

N∑
j=1

pijΦ (qij)

]

bij = ln

(
λ1v,j

λ1z,i

)
,

(14)

respectively, and where

qij =
−bij + lnκ− µg,i√

ωg,i
. (15)

Observe that the vectors λ1z and λ1v characterize the welfare valuation ratios. In particular,

λ1z characterizes the ratio of the certainty equivalent of future lifetime utility to current

consumption, and the vector λ1v denotes the ratio of current lifetime utility to current

consumption. Explicit formulas for these ratios, as well as for the price-dividend ratio and

the risk-free return, are provided in Appendix (A) and we refer to Bonomo et al. (2011) for

formal proofs.

3.4 Hazard rate and Recovery Rate

While modeling the instantaneous conditional default probability or hazard rate is rather

straightforward in continuous time models, this task proves more difficult in discrete time

models, especially when the final goal is tractability obtained through closed-form solutions

for CDS prices. The range of the hazard rate process must be bounded and take values in the

interval [0, 1]. In addition, it should be a persistent process such that the default propensity

tends to be higher following a high default intensity and vice-versa. Given our intention
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to link the hazard rate to macroeconomic fundamentals, we assume that the conditional

instantaneous default probability process ht and the associated default intensity λt are given

by:

ht = 1− exp (−λt) where λt = exp (βλ0 + βλxxt + βλσσt) = λ>ζt. (16)

This set-up guarantees that the hazard rate is well defined and belongs to the interval [0, 1].

In addition, this form of the hazard rate ensures that the marginal propensity to default is

persistent. While the model-specific investor preferences are needed to generate sufficient

countercyclical risk aversion necessary to match the levels of CDS spreads, a persistent

default intensity over time is essential to generate a term risk premium. We also invite the

reader to note that the hazard rate is country-heterogenous and that we omit a superscript for

ease of readability (In essence, βλ0, βλx and βλσ can be defined for each country and/or rating

cohort). From an economic point of view, we expect the parameters βλx and βλσ to be non-

positive and non-negative respectively. The default intensity should increase when forecasts

of macroeconomic growth are low and/or macroeconomic uncertainty is high. Furthermore,

the parameters also have an economic interpretation in the sense that

∂ (1− ht) / (1− ht)
∂xt/xt

= −βλx × λt × xt

∂ (1− ht) / (1− ht)
∂σt/σt

= −βλσ × λt × σt
(17)

represent the elasticities of the ”marginal propensity to survive” to a marginal change in

macroeconomic forecasts and volatility respectively.

Similar to the hazard rate, the dynamics of the recovery rate process are also governed

by macroeconomic fundamentals. We assume that the loss rate Lt (defined as Lt = (1−Rt))

and the associated severity of loss ηt are given by:

Lt = 1− exp (−ηt) where ηt = exp (βη0 + βηxxt + βησσt) = η>ζt, (18)

where

∂ (1− Lt) / (1− Lt)
∂xt/xt

= −βηx × ηt × xt

∂ (1− Lt) / (1− Lt)
∂σt/σt

= −βησ × ηt × σt
(19)

can be interpreted as the elasticities of the recovery rate to small changes in macroeconomic

fundamentals. Likewise, the coefficients βηx and βησ are expected to be non-positive and
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non-negative respectively, so that loss rates are higher in times of negative macroeconomic

forecasts and high macroeconomic uncertainty. The recovery rate is thus state dependent.

This procyclical nature of recovery rates has been documented in several papers (see Altman

and Kishore (1996) among others).

Finally, the conditional cumulative default probability over a T -year horizon can be

defined as

Probt (t < τ ≤ T | τ > t) . (20)

Using our pricing framework, we show in Appendix (B) that the conditional and uncondi-

tional cumulative default probabilities can be expressed as:

Probt (t < τ ≤ T | τ > t) = 1−
(

Ψ̃>T−tζt

)
Prob (t < τ ≤ T | τ > t) = 1−

(
Ψ̃>T−tΠ

)
,

(21)

where the maturity dependent vector sequence
{

Ψ̃j

}
satisfies the recursion (B.3) with initial

conditions (B.4).

So far, we expressed all dynamics under the physical measure. Thus, the hazard rate

can be interpreted as the historical or real-world default intensity. For tractability reasons

however, we also need a closed-form solution of the hazard rate under the risk-neutral mea-

sure. Henceforth, dynamics under the risk-neutral (Q) measure will be represented with

a Q subscript. We show in Appendix (C) that the conditional and unconditional T -year

cumulative default probability under the risk-neutral measure, can be written as:

ProbQt (t < τ ≤ T | τ > t) = 1−
((

Ψ̃Q
T−t

)>
ζt

)
ProbQ (t < τ ≤ T | τ > t) = 1−

((
Ψ̃Q
T−t

)>
Π

)
,

(22)

where the sequence
{

Ψ̃Q
j

}
satisfies the recursion (C.3) with initial condition (C.4).

3.5 CDS price

The challenge remains to derive a closed-form solution for the CDS spread and its moments.

The Markov property of the model is crucial for deriving the corresponding analytical for-

mula. The development of equation (4) leads to the following simplified characterization of
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a K- period CDS spread at day t:

CDSt (K) = ζ>t λ1s (K) , (23)

where the components of the vectors λ1s (K) are functions of the consumption dynamics,

the default and recovery process and of the recursive utility function defined above. Its

components are given by:

λi,1s (K) =

KJ∑
j=1

[
Ψ∗i,j (L)−Ψi,j (L)

]
K∑
k=1

Ψi,kJ (e) +
KJ∑
j=1

(
j
J
−
⌊
j
J

⌋) [
Ψ∗i,j (e)−Ψi,j (e)

] , (24)

where e is the vector with all components equal to one, and L = 1− exp (−η) is the vector

of conditional loss rates, and where the sequences
{

Ψ∗j (·)
}

and {Ψj (·)} are given by the

recursion (D.12), with initial conditions (D.11). In this form, also all unconditional moments

of CDS spreads exist in closed form.

4 Empirical Application

In the empirical application, we start by giving an overview of the summary statistics. We

then proceed by explaining our calibration methodology and finally present and discuss our

results.

4.1 Data and Summary statistics

Our data set consists of mid composite USD denominated CDS prices for 38 sovereign

countries taken from Markit over the sample period May 9th, 2003 until August 19th, 2010,

and covers prices for the full term structure, including 1, 2, 3, 5, 7 and 10-year contracts20.

All contracts contain the full restructuring clause. We thus study a very heterogenous data

set spanning the entire sovereign CDS market, both across geographical regions and rating

categories. The list of the 38 countries is provided in Table 1. Some gaps in observations

remain nevertheless, which we attempt to fill using the following algorithm. For every missing

20Our initial data set covers 84 countries from January 2, 2001 until August 19, 2010. Omitting non-rated
countries or contracts with too many stale data points, we remain with the reduced data set as our purpose
is to study the entire term structure. This faces a selection bias, but the characterization through ratings
and the resulting sample which is representative of the rating distribution in the market should mitigate
concerns.
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number, we check whether the corresponding price exists in the Datastream database. If

the missing price can be found, we use it to replace the missing observation in the Markit

database. If the data point is missing in both databases, we fill missing data using the

nearest-neighbor method, i.e. we replace missing values with a weighted mean of the 2

nearest-neighbor observations. The weights are inversely proportional to the distances from

the neighboring observations. This methodology is consistent with persistent CDS prices.

[Table 1 and 2 here]

Our working data set thus contains 1900 observations for 38 reference countries and 6

maturities, amounting to a total of 433,200 observations. In order to provide an overview of

the data handling, we indicate the number of missing observations in each period in Table

2. The dataset exhibits a considerable amount of heterogeneity both across time and across

entities. For the purpose of our study, we group the countries in buckets corresponding to

their individual rating categories and present summary statistics in Table 321. Our data set

is most similar to those studies in Pan and Singleton (2008), Remolona et al. (2008) and

Longstaff et al. (2010). The first paper, however, studies only three emerging countries, the

second 24 emerging countries and is restricted to 5-year CDS quotes. Likewise, the third

paper only uses 5-year CDS spreads and looks at 26 countries22. Our data source Markit

coincides only with Remolona et al. (2008). Additional country-specific summary statistics

may be found in the external Appendix.

[Table 3 here]

4.2 Model Calibration

The exogenous processes in our model are the endowment process, the hazard rate as well

as the loss rate. We will describe the calibration for each of these processes as well as the

choice of preference parameters in what follows.

4.2.1 Consumption and equity dividend growth dynamics

Our calibration of consumption and equity dividend growths dynamics is as follows. We

first consider the dynamics of these processes as postulated by Bansal and Yaron (2004)

21The countries are grouped according to a Rating classification, which is achieved by assigning an integer
value ranging from 1 (AAA) to 21 (C) at each date to each country. The equally weighted historical average
is then rounded to the nearest integer, which is used as the final rating categorization.

22Our sample covers all three countries of Pan and Singleton (2008), and the overlap in countries is 20 for
the study of Remolona et al. (2008) and 22 for that of Longstaff et al. (2010).
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and written at a monthly decision interval, but allow for contemporaneous correlation of

consumption and dividend schocks as in Bansal et al. (2009).

Next, we assume that the dynamics of consumption and equity dividend growth at a

daily decision interval are identical and simply adjust model parameters accordingly. We

find the corresponding daily parameters so that aggregate daily processes at the monthly

frequency have the same population first and second moments as the monthly processes,

assuming twenty-two trading/decision days in a month. For the purpose of illustration, if

Bansal and Yaron (2004) use a value of µx = 0.0015 at a monthly decision interval for the

mean consumption growth, then the corresponding value at a daily decision interval would be

equal to µdailyx = ∆µx, where ∆ = 1/22. Similarly, a value of φx = 0.975 for the persistence

of the predictable component of consumption growth is translated into a daily value equal

to φdailyx = φ∆
x .

Finally, we characterize the Markov-switching model at the daily decision interval, using

the same procedure as described in Garcia et al. (2008) for the monthly endowment dynamics.

Calibration results for the consumption and dividend growth dynamics are reported in Table

4, where we obtain values for all four states of nature defined by the combinations of low

(indexed by the letter L) and high (indexed by the letter H) conditional means and variances

of consumption growth.

[Table 4 here]

4.2.2 Choice of Preference Parameters

Asset pricing implications are analyzed for an investor who exhibits generalized disappoint-

ment aversion as in Routledge and Zin (2010) and Bonomo et al. (2011). Thus, the investor

requires higher compensation for bearing systematic risk below a given threshold level, which

is defined at a fraction of the certainty equivalent and which can vary over time. This war-

rants the choice of relevant preference parameters, which are adopted from Bonomo et al.

(2011). The latter authors were able to match stylized facts of the equity market. We de-

cide to restrict ourselves to their choice of parameters, as we want to see how our model

fares in the credit market, conditional on matching moments for basic assets. The constant

coefficient of relative risk aversion is set to 2.5. The parameter of disappointment aversion

α is equal to 0.3, implying that the weight attributed to disappointing outcomes (
(

1
α
− 1
)
)

is equal to 2.33. In addition, κ, which defines the fraction of the certainty equivalent below

which disappointment kicks in, is equal to 0.994. Bonomo et al. (2011) defined a level of

κ equal to 0.989 to match the stylized fact of asset prices. However, their decision interval
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was monthly. In order to remain consistent with the calibration results at a daily decision

interval, we need to adjust this parameter. The elasticity of intertemporal substitution (EIS)

ψ is equal to 1.50, implying that the investor prefers early resolution of uncertainty. The

1-period discount factor is kept constant at 0.9989 for a monthly frequency.

4.2.3 Default dynamics

We recall that the hazard rate and the loss processes are given by

ht = 1− exp (−λt) where λt = exp (βλ0 + βλxxt + βλσσt) .

and

Lt = 1− exp (−ηt) where ηt = exp (βη0 + βηxxt + βησσt) .

We calibrate the parameters of the default intensity process by minimizing the Root

Mean-squared-error (RMSE) between the observed and model-implied cumulative sovereign

default rates. Historical sovereign default rates by Moody’s and Standard&Poor’s are pro-

vided in Table 5. Inspection of these numbers warrants several explanations. First, while

cumulative default probabilities are to a large extent similar in magnitude for the two rating

agencies, considerable differences arise because of differences in the considered time horizon

and calculation methodologies (For example, the 10-year cumulative default probability for a

BB-rated sovereign is almost 21% for Moody’s, but only close to 14% for Standard&Poor’s.).

In addition, no country rated A or higher has defaulted within the last 40 years. This makes

it impossible to calibrate default parameters for the latter rating categories. As a conse-

quence, we take rating categories BBB to B as our benchmark. Implications for other rating

groups are not studied in this paper. Moreover, physical default probabilities are unob-

servable, especially so for countries, which have never defaulted. Thus, the calculation of

historical cumulative default probabilities is not entirely representative of physical default

probabilities. Finally, the sample of countries in Table 5 is not identical to the sample of

countries in our study. While we acknowledge that our approach is open to critique, we

believe that calibrating our exogenous default process to these observations and studying

the implications for the term structure of CDS spreads of sovereign countries is the best we

can do.

[Table 5 here]

We start by shutting off the loadings on expected consumption growth and volatility in

the hazard rate process, that is βλx and βλσ are set to zero in equation (16). This implies
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that the default process is constant over time. We then calibrate the value of βλ0 to match

the historical cumulative default probabilities by both Moody’s and Standard&Poor’s for all

ten maturities. In fact, it turns out that a constant default intensity is sufficient to match

the term structure of observed cumulative default probabilities well, as is demonstrated by

the rather low RMSEs. Calibration results for the default parameters and the RMSE for the

term structure of default parameters are provided in Table 6.

[Table 6 here]

4.2.4 Loss dynamics

In order to avoid over-fitting, we keep the recovery rate initially constant at 37.5%. A com-

mon practice in the industry is to define a constant exogenous recovery rate of 25% for

sovereign entities. Yet, this should be under the risk-neutral measure and actual recovery

rates for defaulted countries generally turn out to be higher. We acknowledge the counter-

cyclical nature of the loss rate as has been studied by Altman and Kishore (1996) among

others. However, the main objective of this paper is not to study the Recovery rate as such.

We hence decide to start with a constant loss rate of 62.5%. A more in depth analysis of

implications for recovery rates is left out for further research.

4.3 Asset Pricing Implications and Discussion

As we don’t observe any historical cumulative defaults for countries with a credit standing A

or higher, we are forced to restrict the analysis to the rating categories BBB, BB and B. We

start by considering the case of a constant default process where the sensitivities to expected

consumption growth and macroeconomic uncertainty are shut off. We then move on to

analyze the case of a time-varying default process linked to macroeconomic fundamentals.

4.3.1 Constant default process

Model-implied and observed statistics for cumulative default probabilities are provided in

Table 7, both under the physical as well as under the risk-neutral measure23. In all scenarios

that follow, we also report the ratio of risk-neutral to physical default probabilities, as this

ratio provides some insight on the risk premium implicit in asset prices. As already noticed,

23In Table 6, we reported RMSEs when the parameters of the default process are calibrated against all
ten observed default maturities. As we observe the CDS term structure only for six maturities, we calculate
the RMSE for the physical default probabilities for the same maturities only in order to remain consistent.
This explains slight deviations in RMSEs from Table 6.
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RMSEs are generally low. It is highest for the Ba rating category of Moody’s (1.60%) and

lowest for the Baa rating category by Moody’s (0.49%). The fit is slightly better at maturities

five and higher, while the model performs worse for maturities less than three years. For this

scenario, interpretation of the default probabilities under the risk-neutral measure becomes

redundant, as there is no risk premium for a constant default parameter. Thus, the ratios

of risk-neutral to physical default probabilities are all equal to one.

[Table 7 here]

Given the calibration of our three exogenous processes (endowment, default and loss

dynamics), we check how the model fares in reproducing the term structure. While one

parameter is enough to match the default probabilities, it is clearly insufficient to match

the level or the term premium of the CDS term structure, both for the first and second

moments. Model results are reported in Table 8. This was expected, given the constant

ratio of risk-neutral to physical default probabilities of one. Levels are far too low, and there

is no term premium. Moreover, the volatilities are close to zero. A constant default process

is thus insufficient to provide a solution to the credit spread puzzle, and we need to improve

by linking the hazard rate process to macroeconomic fundamentals. This scenario will be

studied in the following section.

[Table 8 here]

4.3.2 Time-varying default process

In order to match both the historical cumulative default probabilities and the term structure

of CDS prices, it is imperative to increase the hazard rate process to the expected consump-

tion growth and volatility. Thus we run the risk of overfitting our model as we depart from

the most parsimonious outcome possible for the default probabilities. We reactivate the pa-

rameters βλx and βλσ of the default process (16), which were shut off in the previous analysis.

As a consequence, the hazard rate becomes time-varying and state-dependent and is now

sensitive to shocks in macroeconomic forecasts and consumption volatility.

We recalibrate the loss process by minimizing the RMSE between the observed and

model-implied cumulative default probabilities, means and standard deviations of the term

structure, but we put most weight on matching the observed default patterns. This will likely

reduce our fit of the historical default probabilities, but we reemphasize the fact that these

reported numbers depend heavily on the time horizon and the methodology, that the actual

physical default intensities are unobserved, and that the sample of the reported Moody’s
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and Standard&Poor’s default statistics is not entirely representative of the countries in our

sample. More formally, we minimize the following RMSE:

RMSE∗ =

√√√√wp
1

K

K∑
j=1

(p̂j − pj)2 + wµ
1

K

K∑
j=1

(µ̂j − µj)2 + (1− wp − wµ)
1

K

K∑
j=1

(σ̂j − σj)2

(25)

where 1 ≥ wp ≥ wu ≥ (1− wp − wµ) ≥ 0 are the weights attributed to the RMSE of each of

the statistics, K represents the maturity of the contract, and

pj = E [Prob (t < τ ≤ t+ j | τ > t)] µj = E [CDSt (j)] σj = σ [CDSt (j)] (26)

are the unconditional cumulative default probabilities, first and second moments of the term

structure implied by the model and the homologue with a hat superscript refers to the

observed counterpart.

In Table 9, we report the calibration results for the parameters of the hazard rate process

as well as the associated RMSEs (in absolute %). RMSE∗ refers to the RMSE as defined

in equation (25), while RMSEp, RMSEµ and RMSEσ refer to the RMSEs of the default

probabilities, the mean and standard deviation of CDS prices respectively for maturities 1,

2, 3, 5, 7 and 10. The low numbers for RMSEp indicate that we keep doing a good job

in matching the cumulative default probabilities. Furthermore, RMSEµ shows only slight

deviations from the actual mean of term structure. Hence, linking the hazard rate process

to macroeconomic fundamentals improves the fit of the term structure and suggests that

such a specification is necessary to match both default probabilities and mean CDS spreads

at the same time. However, the large numbers reported for RMSEσ suggest that we face a

challenge in matching CDS volatilities. Turning to the parameters of the hazard rate process,

it is interesting to note that all signs are consistent with economic intuition. Negative values

for βλ0 imply that the tendency to default increases when expected consumption growth

decreases. Similarly, positive values for βλσ suggest that defaults are more likely in times of

higher macroeconomic uncertainty.

[Table 9 here]

Model-results for cumulative default probabilities under the physical and risk-neutral

measure, as well as their ratios, are reported in Table 10. As expected, given the low

RMSEs, the model-implied default probabilities are close to their observed counterparts.

Results are better at longer horizons than at short horizons. In contrast to the constant
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hazard rate case, it becomes now interesting to compare metrics under the physical and risk-

neutral measure. The ratios of risk-neutral to physical default probabilities are monotonically

increasing with time, reflecting the term premium required by investors who offer credit risk

insurance by selling CDS contracts. Results for Moody’s also indicate that the term premium

is systematically higher for Baa rated entities than for those in the B rating category, while

the ratio of the latter is always higher than that for Ba rated countries. When we use

the Standard&Poor’s statistics, the term premium is still consistently higher for BBB rated

entities. But the pattern for BB vs B inverts for maturities five and higher. All Q
P ratios

range between 1.24 and 4.04, while the average is 2.36. We would like to compare these

results with some of the metrics reported in the financial literature. Berndt et al. (2007) find

strongly time-varying ratios of CDS implied risk neutral default probabilities to Moody’s

KMV EDF in three sectors, Broadcasting&Entertainment, Healthcare and Oil&Gas. Their

ratios range on average between 1 and 3 for short horizons, but go as high up as 10 in

2002. Similarly, Driessen (2005) reported an average ratio of risk-neutral to actual default

intensities of 1.89 using corporate bonds over the time period 1991 to 2000. In addition,

Huang and Huang (2003) find ratios between 1.11 and 1.75 for corporate bonds. It is thus

comforting to find results of ”default risk premia”, which are in line with the literature.

[Table 10 and 11 here]

Turning to first and second moments of the CDS term structure, we face satisfactory

results for the former, but not entirely for the latter. Results are reported in Table 11. For

the mean spread of the term structure, the best model-implied results are found for the rating

categories Baa/BBB and B, while entities rated Ba/BB perform slightly less good. This is

seen by the RMSEs, which are respectively 2.32% and 8.02%for BBB and B, but 22.27% for

BB (Panel B: Standard&Poor’s). For the former two categories, we slightly underestimate at

the low end of the curve. Thus, considering again Panel B, the one-year model-implied CDS

spread is for instance 75 basis points for the BBB rating category, while the observed spread

is 77 basis points. Likewise for the B entities, the model-implied spread of 417 (481) opposes

that empirical spread of 433 (484) basis points at the one-year (two-year) horizon. On the

other hand, we slightly overestimate spreads in the data at the long end for rating category

BBB, generating slightly steeper slopes. The model-implied spread of 159 basis points is

unsignificantly higher than 155 basis points in the data. For the BB category, this pattern

is inversed, as there is overestimation for short maturities, and a slight underestimation at

longer maturities, leading to flatter curves. Hence, the three-year (ten-year) spread is for

example 205 (263) basis points against the empirical 196 (281) basis points. The worst
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performance is to be found at maturities 1 and 2 for the rating category Ba/B. We link this

finding to that of Pan and Singleton (2008), who analyze the CDS term structure of Mexico,

Turkey and Korea. Turkey also belongs to our Ba/B rating category. Their one-factor model

performs worst at the 1-year maturity. They conclude, following discussions with traders,

that the 1-year contract is extensively used by large institutional money management firms

often as a primary trading vehicle for expressing views on sovereign bonds. They argue that

there is an idiosyncratic liquidity factor arising from significant demand and supply pressures

in the short end of the curve. Given that we first calibrate our exogenous process to match

observed default probabilities, we are more likely to overestimate short maturities for these

given countries (whereas Pan and Singleton (2008) underestimate). Overall, we produce

upward sloping term structures for all rating categories, consistent with the sample data24.

Several structural models find upward sloping term structures for high grade corporate debt,

hump-shaped curves for intermediate credit quality and even downward sloping curves for

low quality names25. These papers usually focus on corporate debt though, whereas our

focus lies on sovereign CDS spreads. Pan and Singleton (2008) also find persistent upward

sloping term structures for three emerging countries. However, the behavior of the sovereign

CDS curves remains to a large extent unexplained.

Model results for standard deviations are more or less unsatisfactory. They are on average

twice as high as observed values at short maturities, but converge to empirical observations

at longer maturities. Volatilities are upward sloping for the rating category Ba/BB, flat for

Baa/BBB and downward sloping for B/B, whereas model-implied volatilities are consistently

downward sloping.

With these results in mind, we want to emphasize that (to our knowledge), this is the

first general equilibrium pricing framework for credit default swaps. Within this setting,

all our dynamics are expressed in real-life dynamics. Moreover, the exogenous processes

are calibrated to historical data. This is in contrast to reduced-form risk-neutral pricing

frameworks, such as in Pan and Singleton (2008). The latter authors model the mean risk-

neutral arrival rate of a credit event according to a one-factor log-normal process. Using the

assumption that the five-year CDS contract is perfectly priced, they back out the dynamics

of the default process and price the other maturities relative to the five-year benchmark.

However, they cannot check consistency with the unobserved default rates of the countries in

their study. Apart from the conceptual pricing framework, our results significantly differ from

this methodology by the fact that we price CDS contracts at an aggregate level, whereas Pan

24Summary statistics are only provided at the aggregate level. Nevertheless, the term structure is persis-
tently upward sloping for every country over our sample period.

25See for example Lando and Mortensen (2005).
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and Singleton (2008) price CDS contracts for individual countries. Our theoretical framework

is not restricted to aggregate levels. Empirically however, we face the challenge that the

physical default intensities are unobservable. As a consequence, we need to calibrate the

default process to historical estimates of forward-looking unconditional default probabilities

of a given rating category (as provided by rating agencies) to back out the parameters of the

default process.

Comparing our model with the previous literature, we focus on U.S. consumption dy-

namics (expected consumption growth and consumption volatility) as being a major channel

through which shocks to a U.S. based international investor spread through the sovereign

credit risk market. We thus revert to a two-factor model rather than a one-factor model.

While an additional factor(s) might improve the fit, we don’t take a stand on the other fac-

tors and conclude, similar to Pan and Singleton (2008), that there might be an idiosyncratic

liquidity factor, which contributes to the variation in sovereign CDS spreads. To our interest

is also that the authors conclude that a one-factor model is acceptable, but that a two-factor

model may be desirbale.

Our results suggest that U.S. expected consumption growth and consumption volatility

are major drivers of the common variation in sovereign CDS spreads and that a two-factor

model does a good job in fitting the sample estimates. While there has been previous evidence

that sovereign credit markets are priced globally, rather than locally, and that required risk

premia are largely driven by investors’ appetite for risk or investor sentiment26, we offer

an alternative explanation and explore a new channel (macroeconomic uncertainty) where

changes in risk aversion may originate. This is consistent with for example Pan and Singleton

(2008) and Longstaff et al. (2010) among others, who identify a strong link between the co-

movement of CDS spreads and the VIX and argue that their evidence is ”consistent with

premium for credit risk in sovereign markets being influenced by spillovers of real economic

growth in the United States to economic growth in other regions of the world”27. In contrast

to Longstaff et al. (2010), Pan and Singleton (2008) and Remolona et al. (2008), we explore

the link between the total spread and U.S. consumption data, while these papers decompose

the spread into an expected loss component and a risk premium component.

The economic intuition that sovereign credit risk is priced globally is valid for several

reasons. Technological developments, as well as financial innovation leading to a spreading

of the ”originate-to-distribute” model have resulted in increased financial integration. Glob-

26See Cantor and Packer (1996), Eichengreen and Mody (1998), Kamin and von Kleist (1999) and McGuire
and Schrijvers (2003) among others.

27Similar conclusions about the U.S. acting as the epicentre for the transmission of economic shocks are
drawn by Roll (1988) and Goetzmann et al. (2005) among others.
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alization, increasing liberalization, tighter trade networks and the European integration have

led to a better level playing field, where shocks to the economy spread easier from one part

of the globe to the other. Such an interpretation may help to explain why sovereign spreads

had persistent downward trends during an economically benign period with low interest

rates, where consumption was high and investors were chasing for yield with increasing risk

appetite. Subsequently, the credit crunch in the U.S. reversed this trend with a regime shift

in risk aversion and a repricing of global asset markets.

The valuation of other asset ratios or welfare ratios has so far not been part of our dis-

cussion. It is important to point out however, that we have restricted ourselves to preference

parameter scenarios, which have proved to be effective in resolving the equity premium puz-

zle28. Hence, we show that there is a strong overlap in the stochastic discount factor for

pricing both the U.S. equity market and the global sovereign CDS market, suggesting that

both are integrated. This is an important finding. As this is not the main emphasis of

our paper though, we simply report the results here (See Table 12) for the KP and GDA

economies, without further discussion.

[Table 12 here]

4.3.3 A disaster explanation of sovereign CDS

The regime-switching set-up of the model allows us to get a better insight into the CDS prices

and default probabilities in different regimes. In Tables 13 and 14, we report state-dependent

spreads and probabilities for the four states of nature determined by expected growth and

volatility of consumption, as well as their means. It is interesting to note that spreads are

mainly driven by the low probability states (low expected consumption growth and high

macroeconomic uncertainty, and low expected consumption growth and low macroeconomic

uncertainty). For the purpose of illustration, consider for instance the 1-year contract in

Table 13 for the Baa rating category by Moody’s (Panel A). It can be seen that the mean

CDS spread is 68 basis points. There is however a huge price discrepancy between states.

The ”low-high” state for example has a spread of 1373 basis points, but spreads for the

other three states are very low. In comparison, this spread is higher than the maximum

observed spread for the 1-year contract in this rating category, but differences are smaller

at other maturities. Taking into account that the probability of being in the worst state is

very low in the long run (2.3%), we compare the nature of sovereign CDS spreads to that

of catastrophe bonds, or disaster insurance 29. This result is very intuitive, as CDS are

28See Bansal and Yaron (2004) for KP and Bonomo et al. (2011) for GDA.
29See Coval et al. (2009) for a discussion on catastrophe bonds.
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basically an insurance against downside risk and should hence reflect the asymmetric nature

of the credit markets. This pattern is observed throughout our results. We thus generate a

disaster interpretation similar in spirit to that of Rietz (1988) and Barro (2006). Empirically,

a similar result is found for European corporate CDS. Berndt and Obreja (2010) find that a

factor mimicking economic catastrophe risk explains a large fraction of CDS returns.

[Table 13 and 14 here]

Interestingly, except for the Baa rating category of the Moody’s calibration results, we

also observe reversals of the term structure in the low probability states where expected

consumption growth is low.

4.3.4 A model without disappointment aversion: The Kreps-Porteus Certainty

Equivalent

In what follows, we compare two scenarios: that of a disappointment averse investor, whose

required compensation for bearing systematic risk is higher below a certain threshold as in

Bonomo et al. (2011), and that of a risk averse investor without disappointment aversion and

a Kreps-Porteus30 (KP) certainty equivalent as in the Long-run-risk economy of Bansal and

Yaron (2004). The comparison of these two scenarios is well suited for several reasons. First

of all, the comparison is straightforward as the Kreps-Porteus scenario is easily obtained

by shutting down disappointment aversion if α is equal to 1. In addition, Bonomo et al.

(2011) showed that asset valuation ratios for an investor in the long-run-risk economy with a

coefficient of risk aversion γ equal to 10 and the elasticity of substitution ψ equal to 1.5 can

be reproduced in an economy with generalized disappointment aversion, where γ reduces to

2.5 in combination with a weight attributed to disappointment aversion ( 1
α
−1) equal to 2.33

and a threshold level set at κ equal to 0.989. Their results are also less sensitive to the value

of the EIS ψ, which is crucial for the results of Bansal and Yaron (2004). In both cases the

1-period discount factor is kept constant at 0.9989. Model results are reported in Tables 15,

16 and 17.

[Table 15, 16 and 17 here]

A first observation is that the calibrated parameters of the default process (Table 15) have

not more economic interpretation and are counterintuitive. Four values of βλσ are negative,

implying that default should decrease in times of higher macroeconomic uncertainty. This

30See Kreps and Porteus (1978).
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is in contrast to the results of the GDA economy, where all values for βλσ line up positively.

While this creates obstacles to infer a meaningful interpretation, we note that, conditional

on these parameters, the KP manages to match default probabilities and the first moment

of the spread curve quite well, as is shown in Tables 16 and 17. Moreover, the KP scenario

does a much better job in matching volatilities, except for the B/B rating category, albeit

the latter RMSE is much smaller than for the GDA economy. These results warrant however

some care for interpretation. The starting point of our analysis was to restrict ourselves to

preference parameter scenarios, which manage to match equity valuation ratios. Bonomo

et al. (2011) have shown that the results of Bansal and Yaron (2004) are heavily dependent

on a value of the EIS equal to 1.5, as well as on the high persistence of consumption growth.

Similarly, results for the term structure break down once these values are disturbed. We

thus find that both the KP and the GDA economies manage to match both the default

probabilities and the first moment of the term structure quite well. However, given the

counterintuitive meaning of the default parameters (negative values for βλσ) and the strong

sensitivity to the values of φx and ψ, we decide to use the GDA economy as our benchmark

for further sensitivity analysis and omit the KP scenario in what follows.

4.4 Parameter Sensitivity analysis - Disturbing α, κ, ψ and γ

Our sensitivity analysis to different values of the preference parameters will be restricted to

the results derived by calibrating the exogenous default process to the historical cumulative

default probabilities provided by Standard&Poor’s.

In order to get a better insight of the sensitivity of the model results to the choice of

our preference parameters, we plot the mean CDS spread for the 1, 5 and 10-year ma-

turity (CDS(1), CDS(5) and CDS(10)) for different values of ψ (ψ=0.5, 1 and 1.5), κ

(κ ∈ [0.9854, 0.9954]) and α (α=0.25, 0.3 and 0.35) in Figure 4. The results are for the

BBB rating category calibrated to the cumulative historical default probabilities reported

by Standard&Poor’s. The first (second, third) row reports results for values of ψ=0.5 (ψ=1,

ψ=1.5). On the x-axis, κ varies between 0.985 and 0.995. Within each plot, the mean

CDS spread is plotted for values of α equal to 0.25 (dotted line), 0.3 (dashed line) and 0.35

(dash-dotted line). The solid line represents the observed values from the sample data.

[Figure 4 here]

Model-implied CDS spreads prove rather insensitive to perturbations in κ. For the one-

year spread, values of κ higher than 0.993 have hardly any effect (if at all, they decrease the

spread marginally), while it increases slightly for the five-year spread, and strongly for the
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ten-year spread. κ represents the fraction of the certainty equivalent below which outcomes

become disappointing. Hence, increasing κ is equivalent to increasing the number of disap-

pointing outcomes. Thus, the writer of credit protection requires higher compensation for

bearing systematic risk. Moreover, Figure 4 shows that the model is quite robust to changes

in ψ, but higher values of ψ do increase the spread by an order of magnitude of maximum

four basis points for the one-year spread, ten basis points for the five-year spread and fifteen

basis points for the ten-year spread. Changes are highest when α is equal to 0.25. An increase

in ψ has a negative effect on the risk-free rate and increases spreads and is thus in line with

Duffee (1998) who reports a negative relationship between the short rate and bond spreads.

This finding makes us confident as the value of ψ is heavily debated in the literature. On

the other hand, the sensitivity to perturbations in the value of α is more pronounced. In

fact, changing the value of α from 0.25 to 0.35 decreases the spread on average by 8 basis

points at the one-year horizon, by 25 basis points at the five-year horizon and by 31 basis

points at the 10-year horizon. Disappointment is decreasing in α, meaning that the extra

compensation required by sellers of credit protection is lower for higher levels of α. This is

confirmed in the sensitivity analysis of the model. Model implications are identical for the

rating categories BB and B, and are not reported here because of space limitations.

In Figure 5, we also report robustness results when we shock the value of γ from 0 to 5.

The table reports the mean CDS spread for the 1, 5 and 10-year maturity (CDS(1), CDS(5)

and CDS(10)) for different values of γ (γ ∈ [0, 5]), for the rating categories BBB to B,

where the hazard rate parameters have been calibrated to the cumulative historical default

probabilities reported by Standard&Poor’s. The first (second, third) row reports the mean

CDS spread for the one-year maturity (two-year, three-year). On the x-axis, γ varies between

0 and 5. Within each plot, the mean CDS spread (doted line) is plotted against the observed

values from the sample data (solid line). As expected, a rational investor systematically

requires higher compensation for bearing systematic risk when the value of γ increases.

[Figure 5 here]

5 U.S. consumption data and the co-movement of sovereign

CDS spreads

5.1 A Principal Component Analysis

We have postulated that expected U.S. consumption growth and volatility are common

factors and a driving force of sovereign CDS risk premia. Merely fitting the moments of
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the data using the means of a consumption-based stochastic discount factor is likely not

convincing enough to support the view that shocks to the U.S. economy affect the risk

appetite of international investors, who adjust their consumption patterns with spillovers to

the risk premia required for unpredictable variation in future default intensities. We therefore

proceed with a deeper study of the link between the strong co-movement of the CDS term

structure with U.S. consumption data. For this purpose, we perform a Principal Component

Analysis on the spread levels of our data set over the full sample horizon May 9, 2003 until

August 19, 2010, for the 38 countries in our sample31. The algorithm displays that the first

three factors account for approximately 95% of the variation in the spread levels, which is

rather strong, given the wide spectrum of contract maturities and reference entities32. Table

18 illustrates the proportion of the variance explained by the first six principal components.

Applying the PCA to subsamples of the term structure doesn’t change the results. As we

move towards longer maturities, the importance of the first factor decreases nevertheless

relative to the second factor.

[Table 18 here]

The most straightforward way to summarize the information from the factor loadings

obtained from the PCA is by grouping the country loadings in maturity buckets and taking

averages. Therefore, we plot averages of the factor loadings for the first three factors against

the contract maturity in Figure 6. Hence for each maturity, we average the loadings on

the first factor for the 38 countries in our sample and report the values. Interestingly, the

loadings for the first factor are invariant of maturity, whereas those on the second factor

are a monotonically increasing function thereof. We thus feel safe to interpret the first and

second factor as a level and slope factor of the CDS term structure. For the third factor,

we observe a decreasing pattern at maturities one to three, and a subsequent stabilization.

We suspect a U-shape pattern, but can’t conclude with certainty as ten years is the longest

maturity in our sample. In such a case, the third factor could be interpreted as a curvature

effect.

[Figure 6 here]

31We note that results are insensitive or even stronger if the PCA analysis is performed on the changes in
spreads, on standardized spreads by the sample mean and sample standard deviation or on the correlation
matrix of the spreads.

32We perform a PCA on the spread levels as opposed to Longstaff et al. (2010), who perform a PCA on
swap spread changes, and Pan and Singleton (2008), who do a country- and maturity-based PCA using the
model-implied risk-premia.
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If U.S. consumption is a main explanatory variable for the variation in sovereign risk

premia, then it ought to be strongly linked to the factors extracted from this Principal Com-

ponent Analysis. Hence, we first estimate the conditional monthly expected consumption

growth and conditional consumption volatility using a Kalman Filter method with time-

varying coefficients. The estimation procedure follows Hamilton (1994) and we estimate the

model (27) using monthly real per capita consumption data from January 1959 until August

2010, downloaded from the FRED database of the Federal Reserve Bank of St.Louis,

gt+1 = xt + σtεg,t+1

xt+1 = (1− φx)µx + φxxt + νxσtεx,t+1

(27)

with

σ2
t+1 = (1− φσ)µσ + φσσ

2
t +

νσ√
2

((
gt+1 − xt|t

σt

)2

− 1

)
,

and where xt|T denotes the conditional expectation E [xt | gT , gT−1, . . .]. Thus, we get a

filtered time series for the conditional expected consumption growth (x̂t|t) and the conditional

consumption volatility (σ̂t). Parameter estimates are provided in Table 19. We then take

month-end averages of the factor scores and regress the first three factors onto conditional

expected consumption growth and conditional consumption volatility, that is we run the

base regressions (28). For each regression, we have 88 monthly observations.

Fi,t = a0,i + a1,i × x̂t|t + a2,i × σ̂t + εt (28)

where i = 1, 2, 3 and t is the month index. Regression results are reported in columns one

to three of Table 20.

[Table 19 and 20 here]

It is interesting to observe that both coefficients on the explanatory variables are sta-

tistically significant at the 1% significance level for regressions (1) and (2), but statistically

insignificant for regression (3). In addition, the adjusted R2 from the first two regressions is

76% and 74% respectively, but drops close to zero in the third regression. Hence at this stage,

we can already dare to promote U.S. consumption data as an influental determinant of the

first two factors, which themselves explain on average almost 91% of the variation in sovereign

credit risk premia. Figure (6) illustrates that loadings on the first Principal Component are

maturity-invariant and uniformly positive across reference entities. The interpretation of the

coefficients then implies that, as â1 is negative, the level of sovereign CDS spreads is lower
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in states of high conditional expected consumption growth. Moreover, a positive â2 implies

that increased consumption volatility (macroeconomic uncertainty) leads to an increase in

sovereign risk premia. These results are in line with economic intuition. Beyond statistical

significance, it is more difficult to come up with with an economic interpretation of the factor

loadings.

For the second regression, both coefficients are statistically significant at the 1% signif-

icance level. In this case, however, both coefficients are positive. The interpretation of the

regression coefficients requires some care. A positive coefficient on expected consumption

growth implies that the slope of the CDS term structure is increasing as the perception of

economic conditions improve. As shocks to expected consumption growth are persistent, pos-

itive shocks increase interest rates, which depresses bond prices and increases yields. Yields

on longer dated bonds increase proportionally more, thereby steepening the slope. The posi-

tive regression coefficient on macroeconomic uncertainty is a result of two offsetting effects. If

expected consumption grotwth is low, higher macroeconomic uncertainty will lower interest

rates as investors’ willingness to save increases. Thus, bond prices increase and yields drop,

again more so for longer maturities. However, conditional on high expected consumption

growth, investors still want to borrow from future consumption following higher conditional

consumption volatility. This leads to a steepening of the term structure. As the uncondi-

tional probability of being in a state of high expected consumption growth is approximately

four times as high the probability of being in a state of low macroeconomic forecasts, the

latter effect dominates and the net result is a steeper term slope. The model replicates this

feature as can be seen in Table 13 and we confirm this interpretation by running an addi-

tional regression where we include an interaction term of conditional consumption volatility

and an indicator variable equal to one if expected consumption growth is high. These results

are not reported because of space limitations.

Finally, the R2 is close to zero for the third regression, and the regression coefficients

are statistically insignificant. The regression results support our view that expected U.S.

consumption growth and volatility are two major drivers of the commonality observed in

sovereign credit risk premia. Their shocks channel through primarily to the level and the

slope of the CDS term structure. Nevertheless, they are not sufficient for explaining the

residual variance, which in addition should help to explain risk premia. Although this

remains mere speculation at this point, we believe the remaining factor to be a local liquidity

factor, influenced by the forces of supply and demand, following the discussion by Pan and

Singleton (2008) for the 1-year contract of sovereign CDS. To put the results of our PCA

into numbers, we conclude that shocks to expected U.S. consumption growth and volatility
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manage to explain on average 91% of the common variation in sovereign CDS premia. An

additional factor, likely more local in nature, should manage to explain an additional 4%.

We conclude by raising the awarness of an error-in-variables (EIV) problem in our robustness

test, as we first estimate expected consumption growth and volatility and use the estimates

in the factor regressions. This problem could be solved by proceeding to a simultaneous

estimation of the conditional consumption time series and the regression coefficients, but

would not allow us to use the long consumption data series for the estimation of conditional

expected consumption growth and volatility. This is a trade-off and we currently decide to

live with the EIV problem.

In order to provide the reader with a visual overview of the previous results, we plot the

filtered series of conditional consumption forecasts and conditional volatility at a monthly

horizon against the monthly mean 5-year CDS spread of all 38 countries in our sample in

Figures 7 and 8. Our previous intuition motivated in section 3.1 is clearly confirmed. There

is a strong negative correlation (-65%) between the aggregated prices for sovereign credit

risk and conditional expected consumption growth. Moreover, the conditional consumption

volatility tracks the mean 5-year CDS spread closely with a staggering correlation of 85%.

[Figure 7 and 8 here]

A major concern is that our results are mainly driven by the crisis period. Ang and

Bekaert (2002) discuss the fact that correlations in financial markets tend to increase during

crisis periods. Subdividing our sample into two sub-periods of equal length, one for the pre-

crisis regime and one for the crisis episode, we observe that the first three PC still account

for approximately 96% of the variation in CDS spread levels. In addition, the explanatory

power of the first PC becomes even stronger (See Table 18). This suggests that the results

are not merely an artifact of the crisis.

5.2 The Variance Risk Premium and the VIX

We argue that U.S. consumption data is a major driver of the co-movement of sovereign CDS

spreads. Previous papers have identified a strong link between sovereign risk premia and the

VIX33. An alternative explanation to our story would be that, as financial volatility increases,

investors who become more risk averse, adjust their consumption patterns to account for

future macroeconomic uncertainty. We explore this hypothesis and answer to the above

findings in three ways. First, we show that (in our model) the Variance Risk Premium

33See Pan and Singleton (2008), Longstaff et al. (2010), Remolona et al. (2008) and Hilscher and Nosbusch
(2010) among others.
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(VRP) is endogenous and itself a function of the exogenous macroeconomic fundamentals.

In addition, we rerun the regressions of the first two factors extracted from the PCA on the

estimates of consumption forecasts and macroeconomic uncertainty and add the VRP in the

regressions. Finally, we run a VAR (Vector autoregression) between our estimates of U.S.

consumption, i.e. expected consumption growth and consumption volatility, and the CBOE

VIX index.

The first attempt to corroborate our hypothesis that U.S. macroeconomic fundamentals

are a source of common risk is to show that the VRP is itself endogenous and a function

of expected consumption growth and volatility. We show in Appendix (E) that the VRP in

closed form is equal to:

V RPt = ζ>t υ
∗ (29)

where the explicit expression of the vector υ∗ is given by equation (E.12).

The model-implied VRP is thus itself endogenous and driven by the exogenous endow-

ment dynamics. Yet, we want to investigate how this result fares empirically. Wang et al.

(2010) investigate corporate CDS and argue that the firm-level VRP contains explanatory

power even after controlling for the market wide VRP and other firm-specific and macroeco-

nomic variables. In addition, they show that the market VRP Granger causes option-implied

and expected variance. Results for the firm-level VRP don’t show any causality pattern. Tak-

ing these findings into account, we rerun the factor regressions (28) and include the VRP34.

Hence we run the following regressions:

Fi,t = a0,i + a1,i × x̂t|t + a2,i × σ̂t + a3,i × V RPt + εt, (30)

where i = 1, 2 and t is the month index. Regression results are reported in columns four to

nine of Table 20.

Regressions (4) and (5) are the same as in columns (1) and (2)35. The adjusted R2s

are 76% and 66% respectively and all coefficients remain significant at the 1% level. The

univariate regressions (6) and (7) include only the market VRP. Although the coefficient

a3 on the VRP is statistically significant at the 5% level for the regression with the first

Principal Component, the adjusted R2 is considerably lower at 7%. For the second Principal

Component, the coefficients are statistically insignificant, and the adjusted R2 is negative.

34The data for the VRP is taken from Hao Zhou’s webpage. As this data series stops in January 2010, we
have to cut the seven last monthly observations from the consumption series.

35The reader should note that the results are almost identical, but that the coefficients change slightly, as
we have seven observations less.
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Regressions (8) and (9) contain all three variables. It is interesting to see that the coefficients

â1 and â2 hardly change once the VRP is included in the regressions and all signs remain

the same. Also the adjusted R2 remains at the same magnitude. In addition, the coeffi-

cient â3 on the VRP loses its statistical significance. These results suggest that the market

VRP provides no additional explanatory power beyond the macroeconomic fundamentals

(conditional consumption forecasts and volatility) for the first two Principal Components,

thereby corroborating our hypothesis of U.S. macroeconomic fundamentals being a source

of common risk in the sovereign CDS market.

Finally, we also investigate the relationship between our estimates of U.S. consumption,

i.e. expected consumption growth and consumption volatility, and the CBOE VIX index.

This is done by running tests for Granger causality following the specified regression:

Yt = φ+ θYt−1 + εt, (31)

where Yt = [V RPt x̂t|t σ̂t]
′. The results are not reported here. There is no evidence

that expected consumption growth is driven by the financial market volatility. Moreover,

Granger causality between consumption volatility and the VIX goes in both directions. Our

findings are thus inconclusive and point to mere correlation.

6 Conclusion

In this paper, we identify common factors of sovereign CDS spreads and address the strong

commonality both across entities and across the whole maturity spectrum. In particular, we

investigate the role of US consumption forecasts and volatility in explaining sovereign CDS

premia. For this purpose, we develop a general equilibrium model for sovereign CDS, linking

credit spreads to the preferences of a representative investor who is risk averse and exhibits

disappointment aversion. To our knowledge, this is the first paper modeling CDS spreads

in a general equilibrium setting and hence believe this to be an important contribution.

While a constant hazard rate process is sufficient to match historical cumulative default

probabilities, a time-varying default process is essential to match both default probabilities

and the term structure. We innovate by linking the intensity process to macroeconomic

fundamentals. Our model performs well in reproducing default probabilities and the first

moment of the term structure at aggregate levels. However, it fails to sufficiently explain the

volatility of spreads at short maturities for rating categories BB and B, but does a better

job at longer horizons. Beyond reproducing mean spreads, the Markov framework allows
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us to obtain state-dependent prices. The asymmetric nature and the extreme difference

between spreads in good and bad times confirm the view that investors in these financial

assets took on significant tail risk. Disasters are characterized by low probability of high

impact events. The results of our model suggest that sovereign CDS are similar in nature

to that of catastrophe bonds. While not central to our results, we also provide evidence of

a significant overlap in the stochastic discount factors for both stocks and sovereign CDS.

This suggests that both markets are integrated.

A PC analysis reveals that the first three principal components explain on average 95%

of the common variation in levels of sovereign CDS spreads. These findings suggest that

sovereign credit risk is priced globally rather than locally, consistent with previous literature.

While it has been pointed out that investors care about consumption and that risk premia

are largely driven by the covariance of sovereign risk with consumption, the link between

sovereign CDS risk premia and (U.S.) consumption has not been consistently explored. Our

findings confirm the view that shocks to the U.S. economy determine how international

investors price financial assets across the globe. In addition, we study a much larger dataset

with 38 countries. In contrast to previous papers, who have proposed a one-factor model, we

argue that two global factors (in our case expected consumption growth and macroeconomic

uncertainty) are sufficient to explain credit risk at an aggregate level, but point to the fact

that a residual idiosyncratic component, such as local demand and supply, is necessary to

explain deviations from aggregate levels. Similar to other studies on sovereign CDS, it is

important to point out the caveat of a relatively poor history of financial time series on

sovereign CDS data. In particular, our sample period only covers one single business cycle.

Our results have important implications for policy makers, international market partic-

ipants and risk managers alike. They point to the fact that the VIX index might not be

the only ”fear gauge” in the financial markets, and that U.S. consumption might be another

risk index, whose shocks spread to sovereign credit markets around the world. Risk man-

agers also have the habit to map their risk exposure to a limited amount of risk factors (risk

mapping). Expected U.S. consumption growth and volatility may be important determi-

nants to consider when performing stress scenarios for sovereign debt investors. It should

also be noted that the assumption underlying the Basel framework for regulatory capital

requirements is that of an ”asymptotic single risk factor”, which is consistent with the story

of globally priced risk. Finally, this study raises awareness as to what might be a source of

commonality in sovereign debt markets. Further research is warranted to understand the

residual risk factor impacting deviations from the ”average aggregate term structure”.
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A Deriving Closed-Form Formulas for Asset Prices and

Stochastic Discount Factor

The Markov chain st or ζt is stationary with ergodic distribution and moments given by:

E [ζt] = Π ∈ RN
+ , E

[
ζtζ
>
t

]
= Diag (Π1, ..,ΠN) and V ar [ζt] = E

[
ζtζ
>
t

]
− ΠΠ>, (A.1)

where Diag (u1, .., uN) is the N ×N diagonal matrix whose diagonal elements are u1,..,uN .
In this model, we can solve for asset prices analytically, for example the price-consumption

ratio Pc,t/Ct (where Pc,t is the price of the unobservable portfolio that pays off consumption)
and the risk-free return Rf,t+1. To obtain asset prices, we need expressions for Rt (Vt+1) /Ct,
the ratio of the certainty equivalent of future lifetime utility to current consumption, and for
Vt/Ct, the ratio of lifetime utility to current consumption. The Markov property of the model
is crucial for deriving analytical formulas for these expressions and we adopt the following
notations:

Rt (Vt+1)

Ct
= λ>1zζt,

Vt
Ct

= λ>1vζt,
Pc,t
Ct

= λ>1cζt and Rf,t+1 =
1

λ>1fζt
. (A.2)

Solving these ratios amounts to characterize the vectors λ1z, λ1v, λ1c and λ1f as functions
of the parameters of the consumption dynamics and of the recursive utility function defined
above. In this appendix, we provide expressions for these ratios and we refer to Bonomo
et al. (2011) for formal proofs.

Proposition A.1 Characterization of the Ratios of Utility to Consumption. Let

Rt (Vt+1)

Ct
= λ>1zζt and

Vt
Ct

= λ>1vζt

respectively denote the ratio of the certainty equivalent of future lifetime utility to current
consumption and the ratio of lifetime utility to consumption. The components of the vectors
λ1z and λ1v are given by:

λ1z,i = exp

(
µg,i +

1− γ
2

ωg,i

)( N∑
j=1

p∗ijλ
1−γ
1v,j

) 1
1−γ

(A.3)

λ1v,i =

{
(1− δ) + δλ

1− 1
ψ

1z,i

} 1

1− 1
ψ

if ψ 6= 1 and λ1v,i = λδ1z,i if ψ = 1, (A.4)

where the components of the matrix P ∗> =
[
p∗ij
]

1≤i,j≤N in (A.3) and (A.6) are given by:

p∗ij = pij
1 +

(
1
α
− 1
)

Φ
(
qij − (1− γ)

√
ωg,i
)

1 +
(

1
α
− 1
)
κ1−γ

N∑
j=1

pijΦ (qij)

, (A.5)
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and where Φ (·) denotes the cumulative distribution function of the standard normal.

Proposition A.2 Characterization of Basic Asset Prices. Let

Pc,t
Ct

= λ>1cζt and Rf,t+1 =
1

λ>1fζt

respectively denote the price-consumption ratio and the risk-free rate. The components of the
vectors λ1c and λ1f are given by:

λ1c,i = δ

(
1

λ1z,i

) 1
ψ
−γ

exp
(
µgg,i +

ωgg,i
2

)(
λ

1
ψ
−γ

1v

)>
P ∗
(
Id− δA∗

(
µgg +

ωgg
2

))−1

ei (A.6)

λ1f,i =
1

λ2f,i

= δ exp

(
−γµg,i +

γ2

2
ωg,i

) N∑
j=1

p̃∗ij

(
λ1v,j

λ1z,i

) 1
ψ
−γ

(A.7)

where µgg = (1− γ)µg, ωgg = (1− γ)2 ωg, where the matrix function A∗ (u) in (A.6) is
defined by:

A∗ (u) = Diag

((
λ1v,1

λ1z,1

) 1
ψ
−γ

exp (u1) , ...,

(
λ1v,N

λ1z,N

) 1
ψ
−γ

exp (uN)

)
P ∗, (A.8)

and where the components of the matrix P̃ ∗> =
[
p̃∗ij
]

1≤i,j≤N in (A.7) are given by:

p̃∗ij = pij
1 +

(
1
α
− 1
)

Φ
(
qij + γ

√
ωg,i
)

1 +
(

1
α
− 1
)
κ1−γ

N∑
j=1

pijΦ (qij)

.

B Deriving the Closed-Form Formula for the cumula-

tive default probability

An important number that often appears when discussing sovereign default is the probabil-
ity that the sovereign will default in the upcoming period, usually one year or five years.
We now compute the expected probability at time t that the entity will default between
t + 1 and T , given that it does not default before t + 1. Formally, we aim at computing
Probt (t < τ ≤ T | τ > t). We have:

Probt (t < τ ≤ T | τ > t) =
Probt (t < τ ≤ T )

Probt (τ > t)

= 1− Et
[
ST
St

]
= 1− Et

[
T−t∏
k=1

(1− ht+k)

] (B.1)
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We conjecture that:

Et

[
j∏

k=1

(1− ht+k)

]
= Ψ̃>j ζt (B.2)

and we show that the solution sequence
{

Ψ̃j

}
satisfies the recursion

Ψ̃>j ζt = Et

[
(1− ht+1)

(
Ψ̃>j−1ζt+1

)]
(B.3)

with the initial condition
Ψ̃0 = e. (B.4)

It follows that

Ψ̃j = P>
(

Ψ̃j−1 � exp (−λ)
)
. (B.5)

Finally, we have

Probt (t < τ ≤ T | τ > t) = 1−
(

Ψ̃>T−tζt

)
Prob (t < τ ≤ T | τ > t) = 1−

(
Ψ̃>T−tΠ

)
.

(B.6)

In case of a constant default intensity process, the unconditional cumulative default
probability between t+ 1 and T simplifies to

Prob (t < τ ≤ T | τ > t) = 1− exp (−λ (T − t)) where λ = exp (βλ0) . (B.7)

C Deriving the Closed-Form Formula for the default

probability under the risk-neutral measure

So far, we expressed all dynamics under the physical measure. Thus, the cumulative de-
fault probability is the historical or real-world default intensity. For tractability reasons
however, we also need a closed-form solution of the cumulative default probability under
the risk-neutral measure. Henceforth, dynamics under the risk-neutral (Q) measure will be
represented with Q subscript. We show that the T -year cumulative default probability under
the risk-neutral measure, defined by

ProbQt [t < τ ≤ T | τ > t]
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can be rewritten as

ProbQt [t < τ ≤ T | τ > t] =
ProbQt (τ > t)− ProbQt (τ > T )

ProbQt (τ > t)

= 1− ProbQt (τ > T )

ProbQt (τ > t)

= 1− EQ
t

[
SQ
T

SQ
t

]
,

where
ProbQt (τ > t) = EQ

t [I (τ > t)] = SQ
t , (C.1)

The derivation of the risk-neutral cumulative default probability thus involves the computa-
tion of the risk-neutral survival probability. We show that SQ

t = St so that

ProbQt [t < τ ≤ T | τ > t] = 1− EQ
t

[
ST
St

]
= 1− Et

[
Zt,T

ST
St

]
.

We conjecture that

Et

[
Zt,t+j

St+j
St

]
=
(

Ψ̃Q
j

)>
ζt (C.2)

Given our conjecture, it turns out the sequence
{

Ψ̃Q
j

}
satisfies the recursion:

(
Ψ̃Q
j

)>
ζt = Et

[
Zt,t+1 (1− ht+1)

((
Ψ̃Q
j−1

)>
ζt+1

)]
(C.3)

with the initial condition:

Ψ̃Q
0 = e. (C.4)

It follows that:

Ψ̃Q
j = diagonal of

(
M̃ �

(
λ2f

((
Ψ̃Q
j−1

)
� exp (−λ)

)>))
P. (C.5)

Using this result, we can write the cumulative probability of default over a (T − t)-year
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horizon as follows:

ProbQt [t < τ ≤ T | τ > t] = 1−
((

Ψ̃Q
T−t

)>
ζt

)
ProbQ [t < τ ≤ T | τ > t] = 1−

((
Ψ̃Q
T−t

)>
Π

)
.

D Deriving the Closed-Form Formula for the CDS Price

We have the following lemma.

Lemma D.1 If (
ε1

ε2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, (D.1)

then

E [exp (σ1ε1) I (ε1 < q1)× exp (σ2ε2) I (ε2 < q2)]

= exp

(
1

2

(
σ2

1 + 2ρσ1σ2 + σ2
2

))
Φρ (q1 − σ1 − ρσ2, q2 − σ2 − ρσ1) .

We assume that the hazard rate ht and the associate default intensity λt are given by:

ht = 1− exp (−λt) where λt = exp (βλ0 + βλxxt + βλσσt) = λ>ζt. (D.2)

We also assume that the loss rate Lt and the associated severity of loss ηt are given by:

Lt = 1− exp (−ηt) where ηt = exp (βη0 + βηxxt + βησσt) = η>ζt. (D.3)

The coefficients βλx and βηx are nonpositive, and the coefficients βλσ and βησ are nonnegative,
so that default and loss tend to increase when forecasts of macroeconomic growth are negative
or when macroeconomic uncertainty increases.

Dividing both the numerator and the denonimator of the expression in equation (4) by
St, we show that computing the price of the CDS is equivalent to computing expressions of
the following forms:

Et

[
Mt,t+j (1−Rt+j)

St+j−1

St

]
and Et

[
Mt,t+j (1−Rt+j)

St+j
St

]
Et

[
Mt,t+j

St+j−1

St

]
and Et

[
Mt,t+j

St+j
St

]
,

(D.4)
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and computing the above expressions is equivalent to computing expressions of the following
forms:

Et

[(
U>ζt+j

)
Mt,t+j

St+j−1

St

]
and Et

[(
U>ζt+j

)
Mt,t+j

St+j
St

]
(D.5)

for a given N × 1 vector U .
To compute these expressions, we conjecture that

Et

[(
U>ζt+j

)
Mt,t+j

St+j−1

St

]
= Ψ∗j (U)> ζt

Et

[(
U>ζt+j

)
Mt,t+j

St+j
St

]
= Ψj (U)> ζt.

(D.6)

The goal is now to characterize the two solution sequences
{

Ψ∗j (U)
}

and {Ψj (U)}. Given

our conjecture, it turns out that both sequences
{

Ψ∗j (U)
}

and {Ψj (U)} satisfy the same
recursion:

Ψ∗j (U)> ζt = Et

[
Mt,t+1 (1− ht+1)

(
Ψ∗j−1 (U)> ζt+1

)]
Ψj (U)> ζt = Et

[
Mt,t+1 (1− ht+1)

(
Ψj−1 (U)> ζt+1

)] (D.7)

but with different initial conditions:

Ψ∗1 (U)> ζt = Et
[(
U>ζt+1

)
Mt,t+1

]
Ψ0 (U)> ζt = U>ζt.

(D.8)

To derive an explicit solution for the first initial condition in (D.8), we need to compute
the expectation Et [Mt,t+1 | ζm,m ∈ Z].

Using Lemma D.1, we show that:

Et [Mt,t+1 | ζm,m ∈ Z] = ζ>t M̃ζt+1 (D.9)

where the components of the matrix M̃ are given by:

m̃ij = exp

(
aij − γµg,i +

1

2
γ2ωg,i

)[
1 +

(
1

α
− 1

)
Φ
(
qij + γ

√
ωg,i
)]
. (D.10)

It follows that:

Ψ∗1 (U) = diagonal of
(
M̃ �

(
eU>

))
P

Ψ0 (U) = U,
(D.11)

where e denotes the N × 1 vector with all components equal to one.
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We now derive an explicit solution for the recursion (D.7), that is satisfied by the solution
sequences

{
Ψ∗j (U)

}
and {Ψj (U)}. We show that:

Ψ∗j = diagonal of
(
M̃ �

(
e
(
Ψ∗j−1 � exp (−λ)

)>))
P

Ψj = diagonal of
(
M̃ �

(
e (Ψj−1 � exp (−λ))>

))
P.

(D.12)

Proposition D.1 Characterization of the Price of the CDS.

CDSt (K) = λ1s (K)> ζt (D.13)

The components of the vectors λ1s (K) are functions of the consumption dynamics and of
the recursive utility function defined above, and its components are given by:

λi,1s (K) =

KJ∑
j=1

[
Ψ∗i,j (L)−Ψi,j (L)

]
K∑
k=1

Ψi,kJ (e) +
KJ∑
j=1

(
j
J
−
⌊
j
J

⌋) [
Ψ∗i,j (e)−Ψi,j (e)

] , (D.14)

where e is the vector with all components equal to one, and L = 1 − exp (−η) is the vector
of conditional loss rates, and where the sequences

{
Ψ∗j (·)

}
and {Ψj (·)} are given by the

recursion (D.12), with initial conditions (D.11).

E Deriving the Closed-Form Formula for the Variance

Risk Premium

The return on the consumption asset can be expressed as follows:

Rc,t+1 =
Pc,t+1 + Ct+1

Pc,t
. (E.1)

Given the endowment dynamics and the specifications of the stochastic discount factor, the
log return rt+1, defined as ln (Rc,t+1), is equal to:

rt+1 = ζ>t Λcζt+1 +
√
ω>c ζtεc,t+1 where Λc,ij = ln

[
λ1c,j + 1

λ1c,i

]
+ µc,i . (E.2)

Using the variance decomposition, we show that the variance σ2
r,t+1 = V art [rt+1] is equal to:

σ2
r,t+1 = υ>ζt, (E.3)

where

υ = diagonal of
(
(Λc � Λc)P + ωce

> − (ΛcP )� (ΛcP )
)
. (E.4)
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The variance risk premium is defined as the difference of the implied and realized volatility,
that is the difference between the variance under the risk-neutral measure and the physical
measure.

V RPt = EQ
t

[
σ2
r,t+1

]
− Et

[
σ2
r,t+1

]
(E.5)

where σ2
r,t+1 is the variance and the superscript Q denotes the expectation taken under the

risk-neutral measure. Using (E.3) and applying a change of measure, we can rewrite the
above expression as follows:

V RPt = Et
[
Zt,t+1σ

2
r,t+1

]
− Et

[
σ2
r,t+1

]
(E.6)

= Et
[
Zt,t+1υ

>ζt+1

]
− Et

[
υ>ζt+1

]
(E.7)

Conditioning first on the entire Markov chain, this expression can be rewritten as:

= Et
[
Zt,t+1υ

>ζt+1 | ζm,m ∈ Z
]
− Et

[
υ>ζt+1 | ζm,m ∈ Z

]
(E.8)

= Et

[(
ζ>t M̃ζt+1

)
λ2f

(
υ>ζt+1

)]
−
(
υ>ζt+1

)
(E.9)

= ζ>t

(
M̃ �

(
λ2fυ

>))Pζt − ζ>t (eυ>)Pζt (E.10)

= ζ>t υ
∗ (E.11)

where

υ∗ = diagonal of
(
M̃ �

(
λ2fυ

>)P − eυ>P) (E.12)
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Figure 1: 5-year Sovereign CDS spreads
The table illustrates the historical 5-year CDS spread for the 38 countries in the sample over the time period May 9th, 2003

until August 19th, 2010. Source: Markit
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Figure 2: Average 5-year Sovereign CDS spread
The table illustrates the historical average 5-year CDS spread of the 38 countries in the sample over the time period May 9th,

2003 until August 19th, 2010. This graph was inspired by the illustration in Pan and Singleton (2008) Source: Markit
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Figure 3: Consumption growth vs. iTraxx
Consumption growth on the right-hand scale is defined as real U.S. Consumption growth rate for non-durables and services.

The iTraxx EU on-the-run series is the mean index spread over the quarter. Source: BEA and Datastream
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Figure 4: Sensitivity Analysis - BBB
The table reports the mean CDS spread for the 1, 5 and 10-year maturity (CDS(1), CDS(5) and CDS(10)) for different values of

ψ (ψ=0.5, 1 and 1.5), κ (κ ∈ [0.985, 0.995]) and α (ψ=0.25, 0.3 and 0.35). The results are for the BBB rating category calibrated

to the cumulative historical default probabilities reported by Standard&Poor’s. The first (second, third) row reports results for

values of ψ=0.5 (ψ=1, ψ=1.5). On the x-axis, κ varies between 0.985 and 0.995. Within each plot, the mean CDS spread is

plotted for values of α equal to 0.25 (dotted line), 0.3 (dashed line) and 0.35 (dash-dotted line). The solid line represents the

observed values from the sample data.
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Figure 5: Sensitivity Analysis - γ
The table reports the mean CDS spread for the 1, 5 and 10-year maturity (CDS(1), CDS(5) and CDS(10)) for different values

of γ (γ ∈ [0, 5]), for the rating categories BBB to B, where the hazard rate parameters have been calibrated to the cumulative

historical default probabilities reported by Standard&Poor’s. The first (second, third) row reports the mean CDS spread for

the one-year maturity (two-year, three-year). On the x-axis, γ varies between 0 and 5. Within each plot, the mean CDS spread

(doted line) is plotted against the observed values from the sample data (solid line).
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Figure 6: Factor Loadings
Average value for each contract maturity of the 38 country loadings on the First, Second and Third Principal Components

extracted from a Principal Components Analysis on the levels of sovereign CDS spreads from May 2003 until August 2010.

Source: Markit
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Figure 7: Expected Consumption Growth vs. 5-year Mean CDS Spread
The table plots the historical mean 5-year CDS spread (left scale - dotted line) of the 38 countries in the sample over the time

period May 9th, 2003 until August 19th, 2010 against the filtered time series of the conditional expected consumption growth

(right scale - dashed line) at a monthly horizon. Data for real per capita consumption is taken from the FRED database of the

Federal reserve Bank of St.Louis from January 1959 until August 2010. The estimated series is obtained using a Kalman Filter

method with time-varying coefficients. The CDS data is obtained from Markit.
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Figure 8: Consumption Volatility vs. 5-year Mean CDS Spread
The table plots the historical mean 5-year CDS spread (left scale - dotted line) of the 38 countries in the sample over the time

period May 9th, 2003 until August 19th, 2010 against the filtered time series of the conditional consumption volatility (right

scale - dashed line) at a monthly horizon. Data for real per capita consumption is taken from the FRED database of the Federal

reserve Bank of St.Louis from January 1959 until August 2010. The estimated series is obtained using a Kalman Filter method

with time-varying coefficients. The CDS data is obtained from Markit.
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Table 1: Country List
The table presents the list of 38 countries selected for the study and the corresponding geographical region. The third column
indicates the Standard&Poor’s Rating in 2010. The fourth column indicates the historical rating as traced back by Fitch
Ratings over the sample period, that is from May 9th, 2003 until August 19th, 2010. At each date, an integer value ranging
from 1 (AAA) to 21 (C) is assigned to each country. The equally weighted historical average is then rounded to the nearest
integer, which is used as the final rating categorization. Countries are then grouped into 6 rating buckets (AAA, AA, A, BBB,
BB, B).

Classification # entities Country Region S&P Rating (’10) Average S&P Rating

AAA 4

Austria Europe AAA AAA
France Europe AAA AAA
Germany Europe AAA AAA
Spain Europe AA AAA

AA 6

Belgium Europe AA+ AA+
Italy Europe A+ AA-
Japan Asia AA AA
Portugal Europe A- AA
Qatar Middle East AA AA
Slovenia E.Europe AA AA-

A 9

Chile Lat.Amer A+ A-
China Asia A+ A
Czech Republic E.Europe A A
Greece Europe BB+ A
Israel Middle East A A-
Korea (Republic of) Asia A A+
Lithuania E.Europe AAA A-
Malaysia Asia A- A-
Slovakia E.Eur A+ A

BBB 11

Bulgaria E.Eur BBB BBB-
Croatia E.Europe BBB BBB-
Hungary E.Europe BBB- BBB+
Mexico Lat.Amer BBB BBB+
Morocco Africa BBB- BBB-
Panama Lat.Amer BBB- BBB-
Poland E.Europe A- BBB+
Romania E.Europe BB+ BBB-
Russian Federation E.Europe BBB BBB+
South Africa Africa BBB+ BBB+
Thailand Asia BBB+ BBB+

BB 6

Brazil Lat.Amer BBB- BB
Colombia Lat.Amer BB+ BB
Egypt Africa BB+ BB+
Peru Lat.Amer BBB- BB+
Philippines Asia BB- BB
Turkey Middle East BB BB-

B 2
Lebanon Middle East B B-
Venezuela Lat.Amer BB- B+
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Table 2: Data handling
The first column indicates the number of missing observations prior to the replacement using the Datstream database for each

maturity. The second column indicates the number of missing observations prior to the interpolation algorithm. The third

column indicates the number of observations in the initial Markit database.

Missing1 Missing2 Obs.
1y 729 225 71471
2y 795 128 71405
3y 79 50 72121
5y 17 17 72183
7y 202 174 71998
10y 191 187 72009

60



Table 3: Summary Statistics
The table reports summary statistics for the CDS term structure of 38 sovereign countries over the sample period May 9th, 2003
until August 19th, 2010. All CDS prices are mid composite quotes and USD denominated. Rating classification is achieved
by assigning an integer value ranging from 1 (AAA) to 21 (C) at each date to each country. The equally weighted historical
average is then rounded to the nearest integer, which is used as the final rating categorization. The Mean (Median) spread
is calculated as the historical mean (median) spread, where at each date, all observations within a given rating category are
aggregated by taking the mean. Similarly, the standard deviation (Skewness, Kurtosis) is calculated as the standard deviation
(skewness, kurtosis) of the data series aggregated at each date within a given rating category. AC1 and AC2 are the first-order
and second-order autocorrelation coefficients respectively. Source: Markit

1y 2y 3y 5y 7y 10y

AAA

Mean 15 17 19 23 24 26
Median 2 2 3 4 5 7
Stand.dev. 26 28 30 34 34 33
Minimum 0 0 1 1 2 2
Maximum 304 301 293 274 270 266
Skewness 2.0564 1.9484 1.8314 1.6406 1.5955 1.5436
Kurtosis 6.4478 5.9727 5.4630 4.6546 4.4690 4.2711
AC1 0.9940 0.9949 0.9970 0.9975 0.9975 0.9974
AC2 0.9882 0.9896 0.9929 0.9938 0.9938 0.9936

AA+/AA-

Mean 24 27 31 38 41 45
Median 3 4 5 8 12 16
Stand.dev. 36 38 40 44 44 43
Minimum 0 1 1 2 2 3
Maximum 557 536 499 461 433 410
Skewness 1.9741 1.8657 1.7649 1.5922 1.5538 1.5049
Kurtosis 5.9852 5.5648 5.1730 4.5023 4.3756 4.2291
AC1 0.9969 0.9972 0.9975 0.9978 0.9978 0.9977
AC2 0.9931 0.9938 0.9942 0.9949 0.9949 0.9947

A+/A-

Mean 49 55 61 71 76 81
Median 12 18 24 34 41 49
Stand.dev. 69 72 74 77 75 73
Minimum 1 2 3 5 5 6
Maximum 1235 1172 1127 1015 952 893
Skewness 1.8626 1.7728 1.7199 1.6175 1.6013 1.5790
Kurtosis 5.7254 5.3927 5.2492 4.9655 4.9716 4.9357
AC1 0.9967 0.9970 0.9971 0.9974 0.9973 0.9972
AC2 0.9917 0.9925 0.9926 0.9932 0.9929 0.9927

BBB+/BBB-

Mean 77 95 109 132 143 155
Median 33 54 74 106 123 139
Stand.dev. 105 106 105 103 99 96
Minimum 3 3 5 8 11 14
Maximum 1190 1100 1110 1106 1096 1081
Skewness 2.5106 2.2959 2.1138 1.8214 1.7287 1.6367
Kurtosis 8.8727 8.0408 7.4521 6.5033 6.2845 6.0735
AC1 0.9976 0.9974 0.9970 0.9967 0.9966 0.9964
AC2 0.9935 0.9931 0.9922 0.9915 0.9912 0.9907

BB+/BB-

Mean 110 157 196 255 281 305
Median 78 115 146 197 225 250
Stand.dev. 92 111 125 138 138 138
Minimum 15 7 1 1 74 72
Maximum 822 845 903 1032 1036 1039
Skewness 1.9439 1.3165 1.0910 1.0076 0.9745 0.9407
Kurtosis 6.9222 4.0214 3.2960 3.1518 3.0829 3.0273
AC1 0.9979 0.9977 0.9976 0.9974 0.9972 0.9971
AC2 0.9950 0.9944 0.9943 0.9938 0.9935 0.9931

B+/B-

Mean 433 484 517 564 574 599
Median 328 403 455 517 538 562
Stand.dev. 371 362 350 328 303 286
Minimum 19 34 55 117 140 186
Maximum 3654 3504 3400 3234 3111 3053
Skewness 1.8338 1.6900 1.6378 1.5881 1.7529 1.7011
Kurtosis 6.5669 6.0799 5.9518 5.8400 6.6471 6.4744
AC1 0.9901 0.9916 0.9926 0.9927 0.9889 0.9928
AC2 0.9801 0.9827 0.9846 0.9849 0.9773 0.9845
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Table 4: Parameters of the Markov-Switching Models.
The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency is calibrated as in Bansal et al. (2009) with
µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072, φσ = 0.995, νσ = 6.2547× 10−6 and ρ1 = 0.4018.

∆ct+1 = xt + σtεc,t+1

∆dt+1 = (1− φd)µx + φdxt + νdσtεd,t+1

xt+1 = (1− φx)µx + φxxt + νxσtεx,t+1

σ2
t+1 = (1− φσ)µσ + φσσ

2
t + νσεσ,t+1

(E.13)

where 
εc,t+1

εd,t+1

εx,t+1

εσ,t+1

 | Jt ∼ NID



0
0
0
0

 ,


1 ρ1 0 0
ρ1 1 0 0
0 0 1 0
0 0 0 1


 .

Parameters of the model with predictable consumption growth at the daily frequency are obtained from the monthly-to-daily
mapping system as described in equation (E.14) and explained in section 4.2.1:

µdailyx = ∆µx, µdailyσ = ∆µσ , φdailyd = φd, νdailyd = νd, ρdaily1 = ρ1,

φdailyx = φ∆
x , νdailyx = νx

√√√√√(1− φ2∆
x

1− φ2
x

)/1 +
2φx

1− φx
−

2∆φx
(

1− φ1/∆
x

)
(1− φx)2



φdailyσ = φ∆
σ , νdailyσ = νσ

√
∆

√√√√√(1− φ2∆
σ

1− φ2
σ

)/1 +
2φσ

1− φσ
−

2∆φσ
(

1− φ1/∆
σ

)
(1− φσ)2


(E.14)

where we consider ∆ = 1/22, meaning that there are 22 trading/decision days per month. The parameters at a daily frequency

obtained from the mapping system (E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx =

0.0019, µdailyσ = 2.3564 × 10−6, φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. In Panel A, we report
the parameters of the four-state daily Markov-switching model in which consumption growth is predictable. µc and µd are
conditional means of consumption and dividend growths, ωc and ωd are conditional variances of consumption and dividend
growths and ρ is the conditional correlation between consumption and dividend growths. P> is the transition matrix across
different regimes and Π is the vector of unconditional probabilities of regimes. The four states are characterized by the
combinations of expected consumption growth (µ) and consumption volatility (σ), which can be high (H) and low (L).

Panel A µLσL µLσH µHσL µHσH

µ>c -0.0001048 -0.0001048 0.0000898 0.0000898
µ>d -0.0002778 -0.0002778 0.0001114 0.0001114(

ω>c
)1/2

0.0009251 0.0028207 0.0009251 0.0028207(
ω>d
)1/2

0.0060201 0.0183558 0.0060201 0.0183558
ρ> 0.4017868 0.4017868 0.4017868 0.4017868

P>

µLσL 0.9989295 0.0000481 0.0010224 0.0000000
µLσH 0.0001795 0.9987981 0.0000002 0.0010223
µHσL 0.0001277 0.0000000 0.9998242 0.0000481
µHσH 0.0000000 0.0001277 0.0001797 0.9996926

Π> 0.0875685 0.0234639 0.7011066 0.1878610
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Table 5: Moody’s and Standard&Poor’s Historical Sovereign Default Rates.
Panel A reports Moody’s Historical sovereign Issuer-Weighted cumulative default probabilities over the time period 1983 to 2008.
Panel B reports Standard&Poor’s Sovereign Foreign-Currency Cumulative Average Default Rates Without Rating Modifiers
over the time frame 1975 to 2009. Default rates are conditional on survival. Implied senior debt ratings through 1995, sovereign
credit ratings thereafter. Source: Moody’s and Standard&Poor’s

Moody’s Default Rates (1983-2008)
Panel A 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
Aaa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Baa 0.00 0.55 1.17 1.87 2.68 3.53 3.53 3.53 3.53 3.53
Ba 0.90 2.04 4.02 6.27 8.75 10.58 13.10 15.96 18.35 20.83
B 2.83 6.18 7.45 9.54 11.59 14.11 16.30 18.25 20.91 24.72
Caa 22.64 27.22 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33

Standard&Poor’s Default Rates (1975-2009)
Panel B 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
AAA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BBB 0.00 0.50 1.57 2.72 3.97 5.33 6.07 6.07 6.07 6.07
BB 0.74 2.36 3.70 4.70 6.36 8.24 10.34 12.72 13.63 13.63
B 2.13 5.03 6.71 9.32 11.67 13.54 15.85 20.06 21.87 24.57
CCC 36.84 48.33 59.81 65.55 72.44 81.63 90.81 – – –
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Table 6: Calibration Results for Default Probabilities - Constant hazard rate
The table reports the calibration results for the parameters of the default process for the rating categories Baa to B for
Moody’s (Panel A) and BBB to B for Standard&Poor’s (Panel B) as well as the associated RMSE (in absolute %). The
calibration matches all ten maturities of the historical cumulative default probabilities given by Moody’s and Standard&Poor’s.

Panel A: Moody’s
Baa Ba B

βλ0 −11.0000 −9.4496 −9.2172
RMSE (%) 0.49 1.47 0.74

Panel B: Standard&Poor’s
BBB BB B

βλ0 −10.4891 −9.7680 −9.2076
RMSE (%) 0.74 0.82 0.88
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Table 7: Model-Implied Term Structure Default of Probabilities BBB-B
This table reports model-implied physical and risk-neutral default probabilities for maturities 1 to 10 at the aggregated level
for the rating categories BBB-B as well as their ratio when the hazard rate process is constant. The Bansal and Yaron
(2004) model in equation (E.13) at the monthly frequency is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2,
νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072, φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters

at a daily frequency obtained from the mapping system (E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075,

φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6, φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The
recovery rate is constant and exogenously set at 37.5%. Preference parameters are as indicated below. Panel A reports the
results using the Moody’s statistics to match the cumulative historical default probabilities, while Panel B reports the results
using the Standard&Poor’s information to calibrate the cumulative historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

Physical Default Probabilities

RMSE P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10)

Panel A: Moody’s

Baa
Observed – 0.00 0.55 1.17 – 2.68 – 3.53 – – 3.53
Model 0.49 0.44 0.88 1.31 1.75 2.18 2.61 3.04 3.47 3.89 4.31

Ba
Observed – 0.90 2.04 4.02 – 8.75 – 13.10 – – 20.83
Model 1.60 2.06 4.07 6.04 7.98 9.87 11.72 13.54 15.32 17.06 18.76

B
Observed – 2.83 6.18 7.45 – 11.59 – 16.30 – – 24.72
Model 0.88 2.59 5.11 7.56 9.96 12.29 14.56 16.77 18.92 21.02 23.06

Panel B: Standard&Poor’s

BBB
Observed – 0.00 0.50 1.57 – 3.97 – 6.07 – – 6.07
Model 0.83 0.73 1.46 2.18 2.90 3.61 4.31 5.01 5.71 6.40 7.09

BB
Observed – 0.74 2.36 3.70 – 6.36 – 10.34 – – 13.63
Model 0.66 1.50 2.98 4.43 5.87 7.28 8.67 10.04 11.39 12.72 14.03

B
Observed – 2.13 5.03 6.71 – 11.67 – 15.85 – – 24.57
Model 0.86 2.61 5.16 7.63 10.05 12.40 14.69 16.91 19.09 21.20 23.26

Risk-Neutral Default Probabilities

Q (1) Q (2) Q (3) Q (4) Q (5) Q (6) Q (7) Q (8) Q (9) Q (10)

Panel A: Moody’s

Baa Model – 0.44 0.88 1.31 1.75 2.18 2.61 3.04 3.47 3.89 4.31
Ba Model – 2.06 4.07 6.04 7.98 9.87 11.72 13.54 15.32 17.06 18.76
B Model – 2.59 5.11 7.56 9.96 12.29 14.56 16.77 18.92 21.02 23.06

Panel B: Standard&Poor’s

BBB Model – 0.73 1.46 2.18 2.90 3.61 4.31 5.01 5.71 6.40 7.09
BB Model – 1.50 2.98 4.43 5.87 7.28 8.67 10.04 11.39 12.72 14.03
B Model – 2.61 5.16 7.63 10.05 12.40 14.69 16.91 19.09 21.20 23.26

Ratio of Risk-Neutral to Physical Default Probabilities

Q/P (1) Q/P (2) Q/P (3) Q/P (4) Q/P (5) Q/P (6) Q/P (7) Q/P (8) Q/P (9) Q/P (10)

Panel A: Moody’s

Baa Model – 1 1 1 1 1 1 1 1 1 1
Ba Model – 1 1 1 1 1 1 1 1 1 1
B Model – 1 1 1 1 1 1 1 1 1 1

Panel B: Standard&Poor’s

BBB Model – 1 1 1 1 1 1 1 1 1 1
BB Model – 1 1 1 1 1 1 1 1 1 1
B Model – 1 1 1 1 1 1 1 1 1 1
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Table 8: Model-Implied and Observed Term Structure of CDS Prices BBB-B
This table reports observed and model-implied means and standard deviations for CDS prices for maturities 1 to 10 at the
aggregated level for the rating categories BBB-B when the hazard rate is constant. Column 2 reports the Root Mean Squared
Errors for the model fit. The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency is calibrated
as in Bansal et al. (2009) with µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072, φσ = 0.995,

νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters at a daily frequency obtained from the mapping system (E.14) are

µdailyx = 6.8182×10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564×10−6, φdailyσ = 0.9998,

νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The recovery rate is constant and exogenously set at 37.5%. Preference
parameters are as indicated below. Panel A reports the results using the Moody’s statistics to match the cumulative historical
default probabilities, while Panel B reoprts the results using the Standard&Poor’s information to calibrate the cumulative
historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

Mean

RMSE CDS(1) CDS(2) CDS(3) CDS(4) CDS(5) CDS(6) CDS(7) CDS(8) CDS(9) CDS(10)

Panel A: Moody’s

Baa
Observed – 77 95 109 – 132 – 143 – – 155
Model 95.01 28 28 28 28 28 28 27 27 27 27

Ba
Observed – 110 157 196 – 255 – 281 – – 305
Model 111.70 130 130 130 130 130 130 130 129 129 129

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 369.30 164 164 164 164 164 164 163 163 163 163

Panel B: Standard&Poor’s

BBB
Observed – 77 95 109 – 132 – 143 – – 155
Model 77.63 46 46 46 46 46 46 46 46 46 46

BB
Observed – 110 157 196 – 255 – 281 – – 305
Model 141.12 95 95 95 94 94 94 94 94 94 94

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 367.74 166 166 166 165 165 165 165 165 165 165

Standard deviation

RMSE σCDS(1) σCDS(2) σCDS(3) σCDS(4) σCDS(5) σCDS(6) σCDS(7) σCDS(8) σCDS(9) σCDS(10)

Panel A: Moody’s

Baa
Observed – 105 106 105 – 103 – 99 – – 96
Model 102.05 0 0 0 0 0 0 0 0 0 0

Ba
Observed – 92 111 125 – 138 – 138 – – 138
Model 123.34 2 2 2 2 1 1 1 1 1 1

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 332.86 2 2 2 2 2 2 2 2 2 1

Panel B: Standard&Poor’s

BBB
Observed – 105 106 105 – 103 – 99 – – 96
Model 101.84 1 1 1 1 1 0 0 0 0 0

BB
Observed – 92 111 125 – 138 – 138 – – 138
Model 123.73 1 1 1 1 1 1 1 1 1 1

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 332.84 2 2 2 2 2 2 2 2 2 1
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Table 9: Calibration Results - Time-varying hazard rate
The table reports the calibration results for the parameters of the default process for the rating categories Baa to B for
Moody’s (Panel A) and BBB to B for Standard&Poor’s (Panel B) as well as the associated RMSE (in absolute %) defined by
equation 25. The last three rows refer to the RMSEs for the default probabilities (in absolute %), the mean and standard
deviation of CDS spreads (in basis points) respectively. The calibration results are derived by matching the observed data at
the 1, 2, 3, 5, 7 and 10 year horizon.

Panel A: Moody’s
βλ0 βλx βλσ RMSE∗ RMSEp RMSEµ RMSEσ

Baa −24.1051 −124788.9872 1447.2255 1.2791 0.7832 7.8985 64.4408
Ba −10.0420 −11836.1966 635.1939 3.5419 1.9686 29.0345 60.5523
B −9.5113 −27883.1286 128.9387 2.7151 1.7329 7.7210 196.1384

Panel B: Standard&Poor’s
βλ0 βλx βλσ RMSE∗ RMSEp RMSEµ RMSEσ

BBB −22.0475 −128796.5374 278.5633 0.9223 0.8508 2.3217 28.5383
BB −10.6147 −21499.5930 538.9388 2.5525 0.8734 22.2712 92.6357
B −9.7539 −30137.1928 138.6164 3.0052 2.1053 8.0244 201.1532
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Table 10: Model-Implied Term Structure of Default Probabilities BBB-B
This table reports model-implied physical and risk-neutral default probabilities for maturities 1 to 10 at the aggregated level
for the rating categories BBB-B as well as their ratio when the hazard rate process is time-varying. The Bansal and Yaron
(2004) model in equation (E.13) at the monthly frequency is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2,
νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072, φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters

at a daily frequency obtained from the mapping system (E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075,

φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6, φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The
recovery rate is constant and exogenously set at 37.5%. Preference parameters are as indicated below. Panel A reports the
results using the Moody’s statistics to match the cumulative historical default probabilities, while Panel B reports the results
using the Standard&Poor’s information to calibrate the cumulative historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

Physical Default Probabilities

RMSE P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10)

Panel A: Moody’s

Baa
Observed – 0.00 0.55 1.17 – 2.68 – 3.53 – – 3.53
Model 0.78 0.68 1.26 1.80 2.30 2.78 3.25 3.70 4.15 4.60 5.04

Ba
Observed – 0.90 2.04 4.02 – 8.75 – 13.10 – – 20.83
Model 1.97 2.05 3.97 5.79 7.53 9.22 10.86 12.46 14.02 15.54 17.03

B
Observed – 2.83 6.18 7.45 – 11.59 – 16.30 – – 24.72
Model 1.73 4.14 7.18 9.68 11.89 13.94 15.88 17.75 19.57 21.34 23.07

Panel B: Standard&Poor’s

BBB
Observed – 0.00 0.50 1.57 – 3.97 – 6.07 – – 6.07
Model 0.85 0.81 1.58 2.31 3.02 3.71 4.38 5.05 5.70 6.35 6.99

BB
Observed – 0.74 2.36 3.70 – 6.36 – 10.34 – – 13.63
Model 0.87 1.62 3.07 4.41 5.67 6.88 8.06 9.21 10.33 11.43 12.52

B
Observed – 2.13 5.03 6.71 – 11.67 – 15.85 – – 24.57
Model 2.11 4.10 7.10 9.55 11.71 13.70 15.60 17.43 19.21 20.94 22.63

Risk-Neutral Default Probabilities

Q (1) Q (2) Q (3) Q (4) Q (5) Q (6) Q (7) Q (8) Q (9) Q (10)

Panel A: Moody’s

Baa Model – 1.03 2.52 4.34 6.40 8.60 10.90 13.25 15.62 17.99 20.35
Ba Model – 2.53 5.66 9.14 12.81 16.55 20.29 23.98 27.58 31.07 34.44
B Model – 5.90 12.72 19.68 26.40 32.72 38.57 43.96 48.91 53.43 57.56

Panel B: Standard&Poor’s

BBB Model – 1.17 2.84 4.84 7.04 9.36 11.74 14.15 16.55 18.94 21.28
BB Model – 2.27 5.32 8.82 12.56 16.39 20.22 23.99 27.67 31.23 34.66
B Model – 5.88 12.68 19.63 26.33 32.64 38.49 43.88 48.81 53.33 57.46

Ratio of Risk-Neutral to Physical Default Probabilities

Q/P (1) Q/P (2) Q/P (3) Q/P (4) Q/P (5) Q/P (6) Q/P (7) Q/P (8) Q/P (9) Q/P (10)

Panel A: Moody’s

Baa Model – 1.52 1.99 2.42 2.78 3.10 3.36 3.58 3.76 3.91 4.04
Ba Model – 1.24 1.43 1.58 1.70 1.80 1.87 1.93 1.97 2.00 2.02
B Model – 1.43 1.77 2.03 2.22 2.35 2.43 2.48 2.50 2.50 2.49

Panel B: Standard&Poor’s

BBB Model – 1.44 1.80 2.09 2.33 2.52 2.68 2.80 2.90 2.98 3.05
BB Model – 1.40 1.73 2.00 2.21 2.38 2.51 2.61 2.68 2.73 2.77
B Model – 1.43 1.79 2.06 2.25 2.38 2.47 2.52 2.54 2.55 2.54
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Table 11: Model-Implied and Observed Term Structure of CDS Prices BBB-B
This table reports observed and model-implied means and standard deviations for CDS prices for maturities 1 to 10 at
the aggregated level for the rating categories BBB-B when the hazard rate is time-varying. Column 2 reports the Root
Mean Squared Errors for the model fit. The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency
is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072,

φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters at a daily frequency obtained from the mapping system

(E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6,

φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The recovery rate is constant and exogenously set at 37.5%.
Preference parameters are as indicated below. Panel A reports the results using the Moody’s statistics to match the cumulative
historical default probabilities, while Panel B reoprts the results using the Standard&Poor’s information to calibrate the
cumulative historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

Mean

RMSE CDS(1) CDS(2) CDS(3) CDS(4) CDS(5) CDS(6) CDS(7) CDS(8) CDS(9) CDS(10)

Panel A: Moody’s

Baa
Observed – 77 95 109 – 132 – 143 – – 155
Model 7.90 67 85 101 114 126 136 145 152 159 165

Ba
Observed – 110 157 196 – 255 – 281 – – 305
Model 29.03 163 188 208 225 239 250 260 269 276 283

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 7.72 418 482 520 544 560 570 578 583 587 590

Panel B: Standard&Poor’s

BBB
Observed – 77 95 109 – 132 – 143 – – 155
Model 2.32 75 93 107 119 129 137 144 149 154 159

BB
Observed – 110 157 196 – 255 – 281 – – 305
Model 22.27 149 180 205 224 240 252 263 272 280 286

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 8.02 417 481 520 544 560 570 577 583 587 590

Standard deviation

RMSE σCDS(1) σCDS(2) σCDS(3) σCDS(4) σCDS(5) σCDS(6) σCDS(7) σCDS(8) σCDS(9) σCDS(10)

Panel A: Moody’s

Baa
Observed – 105 106 105 – 103 – 99 – – 96
Model 64.44 207 187 172 159 149 140 132 125 119 114

Ba
Observed – 92 111 125 – 138 – 138 – – 138
Model 60.55 207 187 170 157 146 136 128 121 115 110

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 196.14 714 615 537 477 429 391 361 336 317 300

Panel B: Standard&Poor’s

BBB
Observed – 105 106 105 – 103 – 99 – – 96
Model 28.54 129 112 98 86 77 69 63 58 53 49

BB
Observed – 92 111 125 – 138 – 138 – – 138
Model 92.64 263 231 205 184 167 152 141 131 122 115

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 201.15 722 622 543 482 433 395 365 340 320 303
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Table 12: Asset Pricing Implications.
The entries of the top panel are model preference parameters of the representative investor, the Kreps-Porteus (KP) investor
in the left panel and the Generalized Disappointment Averse (GDA) investor in the right panel. The entries of the bottom
panel are annualized (in percent) population mean and volatility of the risk-free return, the equity price-dividend ratio and the
equity log return in excess of the log risk-free rate. The empirical estimates span over the sample period 1930-2008.

Preferences KP GDA

δ 0.9989 0.9989
γ 10 2.5
ψ 1.5 1.5
α 1 0.3
θ 1 0.994

Asset Prices KP GDA DATA

E
[
Rf − 1

]
0.99 0.97 1.21

σ
[
Rf
]

1.08 2.89 4.10
E [D/P ] 3.95 4.66 3.97
σ [D/P ] 0.32 1.25 1.52
E [r] 5.75 6.46 7.25
σ [r] 17.33 18.68 19.52
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Table 13: Disaster - Mean
This table reports model-implied state-dependent and mean CDS prices (in spreads) for maturities 1 to 10 at the aggregated
level for the rating categories BBB/Baa-B/B when the hazard rate is time-varying. Column 2 reports the state of nature,
Low-Low (Low-High, High-Low, High-High) referring to low (low, high, high) expected consumption growth and low (high,
low, high) consumption volatility. The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency is
calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072,

φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters at a daily frequency obtained from the mapping system

(E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6,

φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The recovery rate is constant and exogenously set at 37.5%.
Preference parameters and unconditional probabilities of regimes are as indicated below. Panel A reports the results using
the Moody’s statistics to match the cumulative historical default probabilities, while Panel B reports the results using the
Standard&Poor’s information to calibrate the cumulative historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

µLσL µLσH µHσL µHσH
Π> 0.0875685 0.0234639 0.7011066 0.1878610

Spreads

µsσs CDS(1) CDS(2) CDS(3) CDS(4) CDS(5) CDS(6) CDS(7) CDS(8) CDS(9) CDS(10)

Panel A: Moody’s

Baa

Low-Low 125 138 146 152 156 159 162 164 167 169
Low-High 1373 1237 1124 1031 955 892 839 795 758 727
High-Low 10 22 35 49 61 73 83 93 102 110
High-High 91 153 197 228 250 267 279 288 295 300
Mean 67 85 101 114 126 136 145 152 159 165

Ba

Low-Low 431 417 405 395 386 380 374 370 367 365
Low-High 1303 1194 1104 1030 970 920 879 844 815 790
High-Low 76 102 126 146 163 178 192 203 214 223
High-High 222 275 313 340 360 375 387 395 402 407
Mean 163 188 208 225 239 250 260 269 276 283

B

Low-Low 2317 2116 1948 1812 1702 1614 1542 1484 1436 1397
Low-High 2845 2575 2347 2159 2007 1884 1784 1702 1635 1578
High-Low 161 257 322 367 400 424 442 456 467 476
High-High 189 296 365 412 444 468 485 498 509 517
Mean 418 482 520 544 560 570 578 583 587 590

Panel B: Standard&Poor’s

BBB

Low-Low 381 355 334 317 303 292 283 275 269 264
Low-High 612 559 516 480 451 426 406 388 374 361
High-Low 27 49 67 82 94 105 114 121 128 134
High-High 42 75 100 119 135 147 157 165 172 178
Mean 75 93 107 119 129 137 144 149 154 159

BB

Low-Low 599 568 541 518 499 483 470 459 451 443
Low-High 1530 1387 1269 1172 1092 1026 972 927 889 856
High-Low 52 88 117 142 162 180 195 207 218 228
High-High 125 193 241 275 300 319 334 345 353 360
Mean 149 180 205 224 240 252 263 272 280 286

B

Low-Low 2324 2123 1954 1817 1707 1618 1546 1487 1439 1400
Low-High 2904 2626 2392 2199 2043 1917 1814 1730 1661 1604
High-Low 158 254 320 365 398 422 440 454 465 474
High-High 188 296 366 412 445 468 485 498 509 517
Mean 417 481 520 544 560 570 577 583 587 590
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Table 14: Disaster - Probabilities
This table reports model-implied state-dependent and mean cumulative default probabilities (in %) for maturities 1 to 10 at
the aggregated level for the rating categories BBB/Baa-B/B when the hazard rate is time-varying. Column 2 reports the state
of nature, Low-Low (Low-High, High-Low, High-High) referring to low (low, high, high) expected consumption growth and
low (high, low, high) consumption volatility. The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency
is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072,

φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters at a daily frequency obtained from the mapping system

(E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6,

φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The recovery rate is constant and exogenously set at 37.5%.
Preference parameters and unconditional probabilities of regimes are as indicated below. Panel A reports the results using
the Moody’s statistics to match the cumulative historical default probabilities, while Panel B reports the results using the
Standard&Poor’s information to calibrate the cumulative historical default probabilities.

δ γ ψ α κ
GDA 0.9989 2.5 1.5 0.3 0.994

µLσL µLσH µHσL µHσH
Π> 0.0875685 0.0234639 0.7011066 0.1878610

Default Probabilities

µsσs P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10)

Panel A: Moody’s

Baa

Low-Low 1.54 2.86 3.96 4.86 5.61 6.24 6.77 7.24 7.67 8.06
Low-High 19.47 30.64 37.17 41.11 43.60 45.26 46.45 47.36 48.10 48.74
High-Low 0.03 0.11 0.24 0.41 0.61 0.84 1.09 1.36 1.65 1.95
High-High 0.35 1.16 2.19 3.31 4.45 5.58 6.67 7.73 8.74 9.71
Mean 0.68 1.26 1.80 2.30 2.78 3.25 3.70 4.15 4.60 5.04

Ba

Low-Low 6.23 10.96 14.62 17.52 19.87 21.85 23.56 25.08 26.47 27.76
Low-High 18.70 30.19 37.54 42.47 45.97 48.62 50.74 52.53 54.08 55.48
High-Low 0.82 1.81 2.92 4.12 5.37 6.66 7.98 9.31 10.65 11.99
High-High 2.61 5.47 8.39 11.26 14.03 16.69 19.21 21.60 23.87 26.02
Mean 2.05 3.97 5.79 7.53 9.22 10.86 12.46 14.02 15.54 17.03

B

Low-Low 29.79 45.15 53.26 57.72 60.36 62.08 63.33 64.34 65.22 66.02
Low-High 36.01 52.48 60.28 64.21 66.40 67.79 68.82 69.67 70.43 71.13
High-Low 0.73 2.16 3.91 5.81 7.76 9.71 11.64 13.55 15.42 17.25
High-High 0.90 2.59 4.58 6.68 8.79 10.88 12.93 14.93 16.88 18.79
Mean 4.14 7.18 9.68 11.89 13.94 15.88 17.75 19.57 21.34 23.07

Panel B: Standard&Poor’s

BBB

Low-Low 5.66 9.78 12.81 15.09 16.83 18.19 19.30 20.22 21.01 21.72
Low-High 9.28 15.56 19.89 22.95 25.16 26.82 28.11 29.15 30.03 30.79
High-Low 0.10 0.36 0.73 1.18 1.68 2.21 2.78 3.36 3.95 4.55
High-High 0.16 0.57 1.13 1.79 2.49 3.23 3.99 4.74 5.50 6.25
Mean 0.81 1.58 2.31 3.02 3.71 4.38 5.05 5.70 6.35 6.99

BB

Low-Low 8.60 14.72 19.13 22.36 24.79 26.68 28.20 29.47 30.56 31.55
Low-High 21.47 33.74 40.95 45.35 48.20 50.17 51.64 52.81 53.80 54.68
High-Low 0.31 0.85 1.56 2.38 3.27 4.22 5.19 6.18 7.19 8.20
High-High 0.80 2.09 3.61 5.22 6.85 8.46 10.04 11.58 13.07 14.52
Mean 1.62 3.07 4.41 5.67 6.88 8.06 9.21 10.33 11.43 12.52

B

Low-Low 29.86 45.22 53.31 57.75 60.36 62.06 63.28 64.27 65.13 65.92
Low-High 36.58 53.11 60.84 64.69 66.82 68.16 69.15 69.97 70.70 71.38
High-Low 0.67 2.04 3.74 5.59 7.48 9.39 11.27 13.13 14.96 16.76
High-High 0.84 2.47 4.41 6.46 8.53 10.57 12.57 14.53 16.44 18.30
Mean 4.10 7.10 9.55 11.71 13.70 15.60 17.43 19.21 20.94 22.63
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Table 15: KP Calibration Results - Time-varying hazard rate
The table reports the calibration results for the parameters of the default process for the rating categories Baa to B for
Moody’s (Panel A) and BBB to B for Standard&Poor’s (Panel B) as well as the associated RMSE (in absolute %) defined
by equation 25. The rational investor has the Kreps-Poretus certainty equivalent. Preference parameters are set as indicated
below. The last three rows refer to the RMSEs for the default probabilities (in absolute %), the mean and standard deviation
of CDS spreads (in basis points) respectively. The calibration results are derived by matching the observed data at the 1, 2, 3,
5, 7 and 10 year horizon.

δ γ ψ α κ
KP 0.9989 10 1.5 1 1

Panel A: Moody’s
βλ0 βλx βλσ RMSE∗ RMSEp RMSEµ RMSEσ

Baa 0.0000 −1713847.1832 −203160.3481 0.8232 0.6898 4.3710 13.3291
Ba −9.9660 −7627.8987 532.6270 2.9205 1.9659 21.6667 23.6616
B 3.4336 −15888.1871 −12739.9295 3.1493 1.4220 26.4076 101.1112

Panel B: Standard&Poor’s
βλ0 βλx βλσ RMSE∗ RMSEp RMSEµ RMSEσ

BBB −8.3171 −15522.1259 −1812.2780 0.8643 0.8195 2.0701 20.0164
BB −10.2543 −11169.2763 550.6112 1.4127 0.7350 11.9037 24.2358
B 3.8007 −16268.4937 −13171.9756 3.3346 1.6844 27.0343 104.2228
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Table 16: KP Model-Implied Term Structure of Default Probabilities BBB-B
This table reports model-implied physical and risk-neutral default probabilities for maturities 1 to 10 at the aggregated level
for the rating categories BBB-B as well as their ratio when the hazard rate process is time-varying and the rational investor
has a Kreps-Porteus certainty equivalent. The Bansal and Yaron (2004) model in equation (E.13) at the monthly frequency
is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2, νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072,

φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters at a daily frequency obtained from the mapping system

(E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075, φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6,

φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The recovery rate is constant and exogenously set at 37.5%.
Preference parameters are as indicated below. Panel A reports the results using the Moody’s statistics to match the cumulative
historical default probabilities, while Panel B reports the results using the Standard&Poor’s information to calibrate the
cumulative historical default probabilities.

δ γ ψ α κ
KP 0.9989 10 1.5 1 1

Physical Default Probabilities

RMSE P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10)

Panel A: Moody’s

Baa
Observed – 0.00 0.55 1.17 – 2.68 – 3.53 – – 3.53
Model 0.56 1.10 1.61 2.11 2.60 3.09 3.56 4.03 4.50 4.96

Ba
Observed – 0.90 2.04 4.02 – 8.75 – 13.10 – – 20.83
Model 1.97 1.90 3.73 5.50 7.23 8.92 10.57 12.18 13.75 15.29 16.80

B
Observed – 2.83 6.18 7.45 – 11.59 – 16.30 – – 24.72
Model 1.42 3.53 6.49 9.12 11.54 13.82 15.99 18.08 20.09 22.04 23.93

Panel B: Standard&Poor’s

BBB
Observed – 0.00 0.50 1.57 – 3.97 – 6.07 – – 6.07
Model 0.82 0.74 1.45 2.15 2.83 3.49 4.15 4.80 5.45 6.08 6.71

BB
Observed – 0.74 2.36 3.70 – 6.36 – 10.34 – – 13.63
Model 0.73 1.44 2.81 4.15 5.44 6.71 7.95 9.17 10.37 11.54 12.70

B
Observed – 2.13 5.03 6.71 – 11.67 – 15.85 – – 24.57
Model 1.68 3.48 6.39 8.96 11.33 13.56 15.68 17.72 19.69 21.61 23.46

Risk-Neutral Default Probabilities

Q (1) Q (2) Q (3) Q (4) Q (5) Q (6) Q (7) Q (8) Q (9) Q (10)

Panel A: Moody’s

Baa Model – 1.05 2.81 4.97 7.35 9.82 12.29 14.70 17.02 19.23 21.32
Ba Model – 2.40 5.55 9.20 13.17 17.30 21.50 25.69 29.81 33.82 37.69
B Model – 5.62 13.03 20.74 28.01 34.50 40.11 44.87 48.86 52.18 54.93

Panel B: Standard&Poor’s

BBB Model – 1.17 2.96 5.11 7.46 9.87 12.28 14.64 16.92 19.09 21.16
BB Model – 2.07 5.10 8.78 12.87 17.19 21.62 26.05 30.41 34.65 38.74
B Model – 5.59 12.99 20.71 27.99 34.49 40.10 44.87 48.86 52.18 54.93

Ratio of Risk-Neutral to Physical Default Probabilities

Q/P (1) Q/P (2) Q/P (3) Q/P (4) Q/P (5) Q/P (6) Q/P (7) Q/P (8) Q/P (9) Q/P (10)

Panel A: Moody’s

Baa Model – 1.88 2.56 3.08 3.48 3.77 3.98 4.13 4.22 4.28 4.30
Ba Model – 1.27 1.49 1.67 1.82 1.94 2.04 2.11 2.17 2.21 2.24
B Model – 1.59 2.01 2.27 2.43 2.50 2.51 2.48 2.43 2.37 2.30

Panel B: Standard&Poor’s

BBB Model – 1.59 2.04 2.38 2.64 2.82 2.96 3.05 3.11 3.14 3.15
BB Model – 1.44 1.81 2.12 2.36 2.56 2.72 2.84 2.93 3.00 3.05
B Model – 1.61 2.03 2.31 2.47 2.54 2.56 2.53 2.48 2.41 2.34
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Table 17: KP Model-Implied and Observed Term Structure of CDS Prices BBB-B
This table reports observed and model-implied means and standard deviations for CDS prices for maturities 1 to 10 at
the aggregated level for the rating categories BBB-B when the hazard rate is time-varying and the rational investor has a
Kreps-Porteus certainty equivalent. Column 2 reports the Root Mean Squared Errors for the model fit. The Bansal and Yaron
(2004) model in equation (E.13) at the monthly frequency is calibrated as in Bansal et al. (2009) with µx = 0.0015, φd = 2,
νd = 6.5075, φx = 0.975, νx = 0.038,

√
µσ = 0.0072, φσ = 0.995, νσ = 6.2547 × 10−6 and ρ1 = 0.4018. The parameters

at a daily frequency obtained from the mapping system (E.14) are µdailyx = 6.8182 × 10−5, φdailyd = 2, νdailyd = 6.5075,

φdailyx = 0.9988, νdailyx = 0.0019, µdailyσ = 2.3564 × 10−6, φdailyσ = 0.9998, νdailyσ = 6.1873 × 10−8 and ρdaily1 = 0.4018. The
recovery rate is constant and exogenously set at 37.5%. Preference parameters are as indicated below. Panel A reports the
results using the Moody’s statistics to match the cumulative historical default probabilities, while Panel B reoprts the results
using the Standard&Poor’s information to calibrate the cumulative historical default probabilities.

δ γ ψ α κ
KP 0.9989 10 1.5 1 1

Mean

RMSE CDS(1) CDS(2) CDS(3) CDS(4) CDS(5) CDS(6) CDS(7) CDS(8) CDS(9) CDS(10)

Panel A: Moody’s

Baa
Observed – 77 95 109 – 132 – 143 – – 155
Model 4.37 67 91 109 122 133 140 146 150 152 154

Ba
Observed – 110 157 196 – 255 – 281 – – 305
Model 21.67 153 181 204 224 242 257 270 281 291 300

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 26.41 381 468 525 561 583 595 599 599 595 587

Panel B: Standard&Poor’s

BBB
Observed – 77 95 109 – 132 – 143 – – 155
Model 2.07 75 96 112 124 133 140 145 148 151 152

BB
Observed – 110 157 196 – 255 – 281 – – 305
Model 11.90 132 166 195 220 241 259 275 289 300 311

B
Observed – 433 484 517 – 564 – 574 – – 599
Model 27.03 379 467 525 561 583 595 600 599 595 588

Standard deviation

RMSE σCDS(1) σCDS(2) σCDS(3) σCDS(4) σCDS(5) σCDS(6) σCDS(7) σCDS(8) σCDS(9) σCDS(10)

Panel A: Moody’s

Baa
Observed – 105 106 105 – 103 – 99 – – 96
Model 13.33 103 96 91 88 86 85 84 82 81 80

Ba
Observed – 92 111 125 – 138 – 138 – – 138
Model 23.66 118 116 115 114 112 111 110 108 107 105

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 101.11 506 474 451 433 418 404 391 378 366 355

Panel B: Standard&Poor’s

BBB
Observed – 105 106 105 – 103 – 99 – – 96
Model 20.02 94 87 84 82 80 79 78 76 75 74

BB
Observed – 92 111 125 – 138 – 138 – – 138
Model 24.24 136 131 128 126 123 121 119 117 116 114

B
Observed – 371 362 350 – 328 – 303 – – 286
Model 104.22 511 477 454 436 420 406 393 380 368 356
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Table 18: Principal Component Analysis
Variation of CDS spreads (levels) explained by the first 6 factors of the Principal Component Analysis. The row ”All” refers to

the pooled data, where all maturities for all countries are taken together. Subsequent columns indicate results for the subsamples,

taken by contract maturity each at a time. Rows labeled Pre-crisis and Crisis refer to the sample periods 09.05.2003-29.12.2006

and 01.01.2007-19.08.2010 applied to all maturities. Source: Markit

PC1 PC2 PC3 PC4 PC5 PC6
All 77.8158 91.0749 94.7448 96.3491 97.5028 98.2378
1y 85.9812 92.8245 95.7170 97.1810 98.2461 99.0540
2y 83.0337 91.6612 95.5640 97.1889 98.2693 98.9229
3y 79.7215 91.7345 95.5324 97.1032 98.1849 98.8207
5y 75.1912 92.0572 95.2786 96.7295 97.9724 98.7011
7y 72.8903 91.5746 94.8203 96.2861 97.4767 98.5779
10y 70.4393 91.6796 94.6215 96.2402 97.5720 98.4832

Pre− crisis 88.2523 93.8364 95.9182 97.1180 97.9096 98.3989
Crisis 86.9193 94.8430 96.7877 98.2607 98.7504 99.0409
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Table 19: Kalman Filter estimates
Kalman Filter estimates for the parameters of the conditional expectation of consumption growth and conditional

consumption volatility. Standard errors are given in parentheses.

µx φx νx µσ φσ
0.001785 0.955642 0.058611 1.372177e− 05 0.9610790

(0.000235) (0.033936) (0.028885) (1.541653e− 06) (0.013410)
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